Nanite News
Recent News |  Archives |  Tags |  About |  Newsletter |  Links | 


More Articles

Gondwana supercontinent underwent massive shift during Cambrian explosionGondwana supercontinent underwent massive shift during Cambrian explosion

Scientists discover oldest evidence of stone tool use and meat-eating among human ancestorsScientists discover oldest evidence of stone tool use and meat-eating among human ancestors


Brain's wiring: More network than pyramid?Brain's wiring: More network than pyramid?

Mimicking the moon's surface in the basementMimicking the moon's surface in the basement


For the first time ever, scientists watch an atom's electrons moving in real timeFor the first time ever, scientists watch an atom's electrons moving in real time


For pandas, there is a mountain high enough, there is a valley low enoughFor pandas, there is a mountain high enough, there is a valley low enough

What plant genes tell us about crop domesticationWhat plant genes tell us about crop domestication

A warmer future for watersportsA warmer future for watersports

Gene discovery may lead to new varieties of soybean plantsGene discovery may lead to new varieties of soybean plants


A lab rat - created in the labA lab rat - created in the lab

Marked for Life: Tattoo Matching Software to Identify SuspectsMarked for Life: Tattoo Matching Software to Identify Suspects


Scientists discover quantum fingerprints of chaosScientists discover quantum fingerprints of chaos

Graphene oxide gets green (7/27/2010)

Tags:
graphene, graphene oxide
New research from Rice University reveals that Shewanella bacteria convert graphene oxide into environmentally benign graphene. (Credit Everett Salas/Rice University)
New research from Rice University reveals that Shewanella bacteria convert graphene oxide into environmentally benign graphene. (Credit Everett Salas/Rice University)

"We can make you and we can break you." If Rice University scientists wrote country songs, their ode to graphene oxide would start something like that. But this song wouldn't break anybody's heart.

A new paper from the lab of Rice chemist James Tour demonstrates an environmentally friendly way to make bulk quantities of graphene oxide (GO), an insulating version of single-atom-thick graphene expected to find use in all kinds of material and electronic applications.

A second paper from Tour and Andreas Lüttge, a Rice professor of Earth science and chemistry, shows how GO is broken down by common bacteria that leave behind only harmless, natural graphite.

The one-two punch appears online this week in the journal ACS Nano.

"These are the pillars that make graphene oxide production practical," said Tour, Rice's T.T. and W.F. Chao Chair in Chemistry as well as a professor of mechanical engineering and materials science and of computer science. The GO manufacturing process was developed as part of a research project with M-I SWACO, a Houston-based producer of drilling fluids for the petrochemical industry that hopes to use graphene to improve the productivity of wells. (Read about that here.)

Scientists have been making GO since the 19th century, but the new process eliminates a significant stumbling block to bulk production, Tour said. "People were using potassium chlorate or sodium nitrates that release toxic gases - one of which, chlorine dioxide, is explosive," he said. "Manufacturers are always reluctant to go to a large scale with any process that generates explosive intermediates."

Tour and his colleagues used a process similar to the one they employed to unzip multiwalled nanotubes into graphene nanoribbons, as described in a Nature paper last year. They process flakes of graphite - pencil lead - with potassium permanganate, sulfuric acid and phosphoric acid, all common, inexpensive chemicals.

"Many companies have started to make graphene and graphene oxide, and I think they're going to be very hard pressed to come up with a cheaper procedure that's this efficient and as safe and environmentally friendly," Tour said.

The researchers suggested the water-soluble product could find use in polymers, ceramics and metals, as thin films for electronics, as drug-delivery devices and for hydrogen storage, as well as for oil and gas recovery.

Though GO is a natural insulator, it could be chemically reduced to a conductor or semiconductor, though not without defects, Tour said.

With so many potential paths into the environment, the fate of GO nanomaterials concerned Tour, who sought the advice of Rice colleague Lüttge.

Lüttge and Everett Salas, a postdoctoral researcher in his lab and primary author of the second paper, had already been studying the effects of bacteria on carbon, so it was simple to shift their attention to GO. They found bacteria from the genus Shewanella easily convert GO to harmless graphene. The graphene then stacks itself into graphite.

"That's a big plus for green nano, because these ubiquitous bacteria are quickly converting GO into an environmentally benign mineral," Tour said.

Essentially, Salas said, Shewanella have figured out how to "breathe" solid metal oxides. "These bacteria have turned themselves inside out. When we breathe oxygen, the reactions happen inside our cells. These microbes have taken those components and put them on the outside of their cells."

It is this capability that allows them to reduce GO to graphene. "It's a mechanism we don't understand completely because we didn't know it was possible until a few months ago," he said of the process as it relates to GO.

The best news of all, Lüttge said, is that these metal-reducing bacteria "are found pretty much everywhere, so there will be no need to 'inoculate' the environment with them," he said. "These bacteria have been isolated from every imaginable environment - lakes, the sea floor, river mud, the open ocean, oil brines and even uranium mines."

He said the microbes also turn iron, chromium, uranium and arsenic compounds into "mostly benign" minerals. "Because of this, they're playing a major role in efforts to develop bacteria-based bioremediation technologies."

Lüttge expects the discovery will lead to other practical technologies. His lab is investigating the interaction between bacteria and graphite electrodes to develop microbe-powered fuel cells, in collaboration with the Air Force Office of Scientific Research and its Multidisciplinary University Research Initiative (MURI).

Note: This story has been adapted from a news release issued by the Rice University

Post Comments:

Search

New Articles
Juelich researchers take a look inside moleculesJuelich researchers take a look inside molecules

Extreme darkness: Carbon nanotube forest covers NIST's ultra-dark detectorExtreme darkness: Carbon nanotube forest covers NIST's ultra-dark detector

Titanium coating with protein 'flower bouquet' nanoclusters strengthens implant attachmentTitanium coating with protein 'flower bouquet' nanoclusters strengthens implant attachment

New nanoscale transistors allow sensitive probing inside cellsNew nanoscale transistors allow sensitive probing inside cells

Buried silver nanoparticles improve organic transistors

Federal grant invests in nanostructured 'super' materialsFederal grant invests in nanostructured 'super' materials

NIST nanofluidic 'multi-tool' separates and sizes nanoparticlesNIST nanofluidic 'multi-tool' separates and sizes nanoparticles

New resource examines questions about the role of nanoscience

15,000 beams of light

Some like it hot: How to heat a 'nano bathtub' the JILA waySome like it hot: How to heat a 'nano bathtub' the JILA way

Decontaminating dangerous drywallDecontaminating dangerous drywall

Kinked nanopores slow DNA passage for easier sequencing

Nano 'pin art': NIST arrays are step toward mass production of nanowiresNano 'pin art': NIST arrays are step toward mass production of nanowires

'White graphene' to the rescue

Graphene under strain creates gigantic pseudo-magnetic fieldsGraphene under strain creates gigantic pseudo-magnetic fields



Archives
August 2010
July 2010
June 2010
May 2010
April 2010
March 2010
February 2010
January 2010
December 2009
November 2009
October 2009
September 2009
August 2009
July 2009
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007


Science Friends
Agricultural Science
Astronomy News
Biology News

Cognitive Research
Chemistry News
Tissue Engineering
Cancer Research


Forensics Report
Fossil News
Genetic Archaeology

Geology News


Physics News


  Archives |  Advertise With Us |  Contact Us |  Links
Use of this site constitutes acceptance of our Terms of Service and Privacy Policy. All contents © 2000 - 2011 Web Doodle, LLC. All rights reserved.