Nanite News
Recent News |  Archives |  Tags |  About |  Newsletter |  Links | 


More Articles

Gondwana supercontinent underwent massive shift during Cambrian explosionGondwana supercontinent underwent massive shift during Cambrian explosion

Scientists discover oldest evidence of stone tool use and meat-eating among human ancestorsScientists discover oldest evidence of stone tool use and meat-eating among human ancestors


Brain's wiring: More network than pyramid?Brain's wiring: More network than pyramid?

Mimicking the moon's surface in the basementMimicking the moon's surface in the basement


For the first time ever, scientists watch an atom's electrons moving in real timeFor the first time ever, scientists watch an atom's electrons moving in real time


For pandas, there is a mountain high enough, there is a valley low enoughFor pandas, there is a mountain high enough, there is a valley low enough

What plant genes tell us about crop domesticationWhat plant genes tell us about crop domestication

A warmer future for watersportsA warmer future for watersports

Gene discovery may lead to new varieties of soybean plantsGene discovery may lead to new varieties of soybean plants


A lab rat - created in the labA lab rat - created in the lab

Marked for Life: Tattoo Matching Software to Identify SuspectsMarked for Life: Tattoo Matching Software to Identify Suspects


Scientists discover quantum fingerprints of chaosScientists discover quantum fingerprints of chaos

Decontaminating dangerous drywall (8/6/2010)

Tags:
nanomaterials, odors
Artist's interpretation of FAST-ACT absorbing and destroying toxins. - Credit: Trent Schindler, NSF
Artist's interpretation of FAST-ACT absorbing and destroying toxins. - Credit: Trent Schindler, NSF

A nanomaterial originally developed to fight toxic waste is now helping reduce debilitating fumes in homes with corrosive drywall.

Developed by Kenneth Klabunde of Kansas State University, and improved over three decades with support from the National Science Foundation, the FAST-ACT material has been a tool of first responders since 2003.

Now, NanoScale Corporation of Manhattan, Kansas--the company Klabunde co-founded to market the technology--has incorporated FAST-ACT into a cartridge that breaks down the corrosive drywall chemicals.

Homeowners have reported that the chemicals--particularly sulfur compounds such as hydrogen sulfide and sulfur dioxide--have caused respiratory illnesses, wiring corrosion and pipe damage in thousands of U.S. homes with sulfur-rich, imported drywall.

"It is devastating to see what has happened to so many homeowners because of the corrosive drywall problem, but I am glad the technology is available to help," said Klabunde. "We've now adapted the technology we developed through years of research for FAST-ACT for new uses by homeowners, contractors and remediators."

The new cartridge, called OdorKlenz®, takes the place of the existing air filter in a home. The technology is similar to one that NanoScale adapted in 2008 for use by a major national disaster restoration service company for odors caused by fire and water damage.

In homes with corrosive drywall, the cartridge is used in combination with related FAST-ACT-based, OdorKlenz® surface treatments (and even laundry additives) to remove the sulfur-bearing compounds causing the corrosion issue.

Developers at NanoScale tested their new air cartridge in affected homes that were awaiting drywall removal, and in every case, odor dropped to nearly imperceptible levels within 10 days or less and corrosion was reduced.

The FAST-ACT material is a non-toxic mineral powder composed of the common elements magnesium, titanium and oxygen. While metal oxides similar to FAST-ACT have an established history tackling dangerous compounds, none have been as effective.

NanoScale's breakthrough was a new method to manufacture the compound as a nanocrystalline powder with extremely high surface area--only a few tablespoons have as much surface area as a football field.

The surface area allows more interactions between the metal oxides and the toxic molecules, enabling the powder to capture and destroy a large quantity of hazardous chemicals ranging from sulfuric acid to VX gas--and their hazardous byproducts--in minutes.

"The concept of nano-sized adsorbents as both a cost-efficient, useful product for first responders and an effective product for in-home use illustrates the wide spectrum of possibilities for this technology," said NSF program director Rosemarie Wesson, who oversaw NanoScale's NSF Small Business Innovation Resarch grants. "It is great to see the original work we supported to help reduce the toxic effects of hazardous spills now expand into other applications."

In coming months, the company is proposing its technology for use in Gulf Coast residences affected by the recent oil spill and other hazardous situations where airborne toxins are causing harm.

Note: This story has been adapted from a news release issued by the National Science Foundation

Post Comments:

Search

New Articles
High-speed filter uses electrified nanostructures to purify water at low costHigh-speed filter uses electrified nanostructures to purify water at low cost

Scientists help explain graphene mystery

Juelich researchers take a look inside moleculesJuelich researchers take a look inside molecules

Extreme darkness: Carbon nanotube forest covers NIST's ultra-dark detectorExtreme darkness: Carbon nanotube forest covers NIST's ultra-dark detector

Titanium coating with protein 'flower bouquet' nanoclusters strengthens implant attachmentTitanium coating with protein 'flower bouquet' nanoclusters strengthens implant attachment

New nanoscale transistors allow sensitive probing inside cellsNew nanoscale transistors allow sensitive probing inside cells

Buried silver nanoparticles improve organic transistors

Federal grant invests in nanostructured 'super' materialsFederal grant invests in nanostructured 'super' materials

NIST nanofluidic 'multi-tool' separates and sizes nanoparticlesNIST nanofluidic 'multi-tool' separates and sizes nanoparticles

New resource examines questions about the role of nanoscience

15,000 beams of light

Some like it hot: How to heat a 'nano bathtub' the JILA waySome like it hot: How to heat a 'nano bathtub' the JILA way

Decontaminating dangerous drywallDecontaminating dangerous drywall

Kinked nanopores slow DNA passage for easier sequencing

Nano 'pin art': NIST arrays are step toward mass production of nanowiresNano 'pin art': NIST arrays are step toward mass production of nanowires



Archives
September 2010
August 2010
July 2010
June 2010
May 2010
April 2010
March 2010
February 2010
January 2010
December 2009
November 2009
October 2009
September 2009
August 2009
July 2009
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007


Science Friends
Agricultural Science
Astronomy News
Biology News

Cognitive Research
Chemistry News
Tissue Engineering
Cancer Research


Forensics Report
Fossil News
Genetic Archaeology

Geology News


Physics News


  Archives |  Advertise With Us |  Contact Us |  Links
Use of this site constitutes acceptance of our Terms of Service and Privacy Policy. All contents © 2000 - 2011 Web Doodle, LLC. All rights reserved.