Nanite News
Recent News |  Archives |  Tags |  About |  Newsletter |  Links | 


More Articles
Eastern North Pacific basking shark a 'species of concern'Eastern North Pacific basking shark a 'species of concern'

Novel sensing mechanism discovered in dendritic cells to increase immune response to HIVNovel sensing mechanism discovered in dendritic cells to increase immune response to HIV

Single gene regulates motor neurons in spinal cordSingle gene regulates motor neurons in spinal cord


Random numbers game with quantum diceRandom numbers game with quantum dice


Scots Pine shows its continental rootsScots Pine shows its continental roots

A nearby galactic exemplarA nearby galactic exemplar


Water in Earth's mantle key to survival of oldest continentsWater in Earth's mantle key to survival of oldest continents

Trouble with sputter? Blame giant nanoparticlesTrouble with sputter? Blame giant nanoparticles


Researchers discover novel mechanism protecting plants against freezingResearchers discover novel mechanism protecting plants against freezing

Strange predatory dinosaur from Europe's Late CretaceousStrange predatory dinosaur from Europe's Late Cretaceous

Brain's wiring: More network than pyramid?Brain's wiring: More network than pyramid?



A warmer future for watersportsA warmer future for watersports


Marked for Life: Tattoo Matching Software to Identify SuspectsMarked for Life: Tattoo Matching Software to Identify Suspects

Federal grant invests in nanostructured 'super' materials (8/11/2010)

Tags:
materials
Oshkosh Corporation, a major supplier of tactical-wheeled vehicles for the U.S. Department of Defense, is a partner in the new center because the company will use futuristic materials developed at CAMM to satisfy military stipulations. - Photo courtesy Oshkosh Corporatin
Oshkosh Corporation, a major supplier of tactical-wheeled vehicles for the U.S. Department of Defense, is a partner in the new center because the company will use futuristic materials developed at CAMM to satisfy military stipulations. - Photo courtesy Oshkosh Corporatin

Backed by a $1.2 million federal grant, the University of Wisconsin-Milwaukee (UWM) has launched a Center for Advanced Materials Manufacturing (CAMM) that will support the transfer of UWM research in bulk nanostructured materials to manufacturing industry in both Wisconsin and the nation.

These futuristic metallic materials hold the potential to revitalize foundries and metal-casting businesses if they can be mass-produced.

CAMM researchers will work with Oshkosh Corporation and other companies to develop an infrastructure for scaling up the production of these revolutionary materials, which could become the new mainstay product of the region's old-economy foundries.

Nanostructured metallic materials are embedded with atomic-scale particles that make them cheaper, lighter and stronger than the original metal alloys. They also deliver high-performance qualities such as self-lubrication and energy-absorption. For example, nanostructured aluminum can be 10 times stronger than conventional aluminum alloys.

"This project falls in line with the university's goal of passing on its research discoveries to the region's businesses in order to fortify the state's economy," says Michael Lovell, dean of UWM's College of Engineering & Applied Science. "The new center will collaborate with more than a dozen businesses from around the Midwest interested in generating these new materials that have so many applications."

"As a major supplier of tactical-wheeled vehicles for the Department of Defense, we must satisfy transportability, safety, energy-efficiency and cost-effectiveness goals," says Robert Hathaway, vice president of materials and process engineering for Oshkosh Corp. "The facility and faculty improvements made by UW-Milwaukee will greatly enhance our collaborative efforts in lightweight materials, vehicle human factors and manufacturing ergonomics."

The materials were developed by CAMM with federal support from the last several years, including appropriations requested by both Sen. Herb Kohl and Rep. Gwen Moore, and funding from the U.S. Army Research Laboratory and Tank-automotive and Armaments Command (TACOM). The materials meet the Army's need for heavy-duty vehicles that can be airlifted and operate for prolonged periods before refueling.

Production of bulk nanostructured materials can help sagging foundries diversify their business because they can be made using conventional metal-casting techniques, says Pradeep Rohatgi, a UWM Distinguished Professor, AAAS fellow, and director of CAMM.

"Foundries could start making these modern products without having to update their equipment," says Rohatgi. "CAMM will also educate students and help train industry workers in the manufacturing of high-tech materials for civilian and defense sectors."

Metals and metal composites represent the largest volume of materials produced in Wisconsin and the state's foundry industry alone employs 21,000 people.

In addition to studying the large-scale production of these materials, CAMM scientists are working on simulation software and impact/fracture modeling to optimize the manufacture of nanostructured materials. Researchers also are developing software that helps manufacturers model reinforcing composite materials, such as carbon or glass fibers, for high-strength, low-weight products.

Note: This story has been adapted from a news release issued by the University of Wisconsin - Milwaukee

Post Comments:

Search

New Articles
Graphene may hold key to speeding up DNA sequencingGraphene may hold key to speeding up DNA sequencing

Scientists observe single ions moving through tiny carbon-nanotube channel

Engineers make artificial skin out of nanowiresEngineers make artificial skin out of nanowires

Scientists gather for symposium on epitaxial graphene

UCLA, Japanese company to collaborate on specialized nano-imaging instrumentation

Study shows nano-architectured aluminum has steely strength

Chemists, engineers achieve world record with high-speed graphene transistors

Edible nanostructures

A model system for group behavior of nanomachines

Developments in nanobiotechnology point to medical applicationsDevelopments in nanobiotechnology point to medical applications

The perfect nanocube: Precise control of size, shape and compositionThe perfect nanocube: Precise control of size, shape and composition

Tiny rulers to measure nanoscale structuresTiny rulers to measure nanoscale structures

High-speed filter uses electrified nanostructures to purify water at low costHigh-speed filter uses electrified nanostructures to purify water at low cost

Scientists help explain graphene mystery

Juelich researchers take a look inside moleculesJuelich researchers take a look inside molecules



Archives
September 2010
August 2010
July 2010
June 2010
May 2010
April 2010
March 2010
February 2010
January 2010
December 2009
November 2009
October 2009
September 2009
August 2009
July 2009
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007


Science Friends
Agricultural Science
Astronomy News
Biology News

Cognitive Research
Chemistry News
Tissue Engineering
Cancer Research


Forensics Report
Fossil News
Genetic Archaeology

Geology News


Physics News


  Archives |  Advertise With Us |  Contact Us |  Links
Use of this site constitutes acceptance of our Terms of Service and Privacy Policy. All contents © 2000 - 2011 Web Doodle, LLC. All rights reserved.