Nanite News
Recent News |  Archives |  Tags |  About |  Newsletter |  Links | 


More Articles

Gondwana supercontinent underwent massive shift during Cambrian explosionGondwana supercontinent underwent massive shift during Cambrian explosion

Scientists discover oldest evidence of stone tool use and meat-eating among human ancestorsScientists discover oldest evidence of stone tool use and meat-eating among human ancestors


Brain's wiring: More network than pyramid?Brain's wiring: More network than pyramid?

Mimicking the moon's surface in the basementMimicking the moon's surface in the basement


For the first time ever, scientists watch an atom's electrons moving in real timeFor the first time ever, scientists watch an atom's electrons moving in real time


For pandas, there is a mountain high enough, there is a valley low enoughFor pandas, there is a mountain high enough, there is a valley low enough

What plant genes tell us about crop domesticationWhat plant genes tell us about crop domestication

A warmer future for watersportsA warmer future for watersports

Gene discovery may lead to new varieties of soybean plantsGene discovery may lead to new varieties of soybean plants


A lab rat - created in the labA lab rat - created in the lab

Marked for Life: Tattoo Matching Software to Identify SuspectsMarked for Life: Tattoo Matching Software to Identify Suspects


Scientists discover quantum fingerprints of chaosScientists discover quantum fingerprints of chaos

Juelich researchers take a look inside molecules (8/23/2010)

Tags:
microscopes
The Juelich method makes it possible to resolve molecule structure where only a blurred cloud was visible before. - Forschungszentrum Jülich
The Juelich method makes it possible to resolve molecule structure where only a blurred cloud was visible before. - Forschungszentrum Jülich

For their look into the nanoworld, the Jülich researchers used a scanning tunneling microscope. Its thin metal tip scans the specimen surface like the needle of a record player and registers the atomic irregularies and differences of approximately one nanometre (a billionth of a millimetre) with minuscule electric currents. However, even though the tip of the microscope only has the width of an atom, it has not been able so far to take a look inside molecules.

"In order to increase the sensitivity for organic molecules, we put a sensor and signal transducer on the tip," says Dr. Ruslan Temirov. Both functions are fulfilled by a small molecule made up of two deuterium atoms, also called heavy hydrogen. Since it hangs from the tip and can be moved, it follow the contours of the molecule and influences the current flowing from the tip of the microscope. One of the first molecules studied by Temirov and co-workers was the perylene tetracarboxylic dianhydride compound. It consists of 26 carbon atoms, eight hydrogen atoms and six oxygen atoms forming seven interconnected rings. Earlier images only showed a spot with a diameter of approximately one nanometre and without any contours. Much like an X-ray image, the Jülich scanning tunneling microscope shows the molecule's honeycombed inner structure, which is formed by the rings.

"It's the remarkable simplicity of the method that makes it so valuable for future research," says Prof. Stefan Tautz, Director at the Institute of Bio- and Nanosystems at Forschungszentrum Jülich. The Jülich method has been filed as a patent and can easily be used with commercial scanning tunnelling microscopes. "The spatial dimensions inside molecules can now be determined within a few minutes, and the preparation of the specimen is based predominantly on standard techniques," says Tautz. In the next step, the Jülich scientists are planning to calibrate the measured current intensity as well. If they are successful, the measured current intensities may allow the type of atoms to be directly determined.

After publishing initial images produced with the new method in 2008, the research group of Tautz and Temirov has now been able to explain the quantum mechanical principle of operation of the deuterium at the tip of the microscope. Their results were supported by computer-assisted calculations by the working group of Prof. Michael Rohlfing at the University of Osnabrück. The so-called short-range Pauli repulsion is a quantum-physical force between the deuterium and the molecule which modulates the conductivity and allows us to measure the fine structures very sensitively.

The Jülich method can be used to measure the structure and charge distribution of flat molecules which can be used as organic semiconductors or as part of fast and efficient future electronic devices. Large three-dimensional biomolecules such as proteins can be examined as soon as the techniques have been refined.

Note: This story has been adapted from a news release issued by the Helmholtz Association of German Research Centres

Post Comments:

Search

New Articles
Extreme darkness: Carbon nanotube forest covers NIST's ultra-dark detectorExtreme darkness: Carbon nanotube forest covers NIST's ultra-dark detector

Titanium coating with protein 'flower bouquet' nanoclusters strengthens implant attachmentTitanium coating with protein 'flower bouquet' nanoclusters strengthens implant attachment

New nanoscale transistors allow sensitive probing inside cellsNew nanoscale transistors allow sensitive probing inside cells

Buried silver nanoparticles improve organic transistors

Federal grant invests in nanostructured 'super' materialsFederal grant invests in nanostructured 'super' materials

NIST nanofluidic 'multi-tool' separates and sizes nanoparticlesNIST nanofluidic 'multi-tool' separates and sizes nanoparticles

New resource examines questions about the role of nanoscience

15,000 beams of light

Some like it hot: How to heat a 'nano bathtub' the JILA waySome like it hot: How to heat a 'nano bathtub' the JILA way

Decontaminating dangerous drywallDecontaminating dangerous drywall

Kinked nanopores slow DNA passage for easier sequencing

Nano 'pin art': NIST arrays are step toward mass production of nanowiresNano 'pin art': NIST arrays are step toward mass production of nanowires

'White graphene' to the rescue

Graphene under strain creates gigantic pseudo-magnetic fieldsGraphene under strain creates gigantic pseudo-magnetic fields

Nano's brightest coming to Rice



Archives
August 2010
July 2010
June 2010
May 2010
April 2010
March 2010
February 2010
January 2010
December 2009
November 2009
October 2009
September 2009
August 2009
July 2009
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007


Science Friends
Agricultural Science
Astronomy News
Biology News

Cognitive Research
Chemistry News
Tissue Engineering
Cancer Research


Forensics Report
Fossil News
Genetic Archaeology

Geology News


Physics News


  Archives |  Advertise With Us |  Contact Us |  Links
Use of this site constitutes acceptance of our Terms of Service and Privacy Policy. All contents © 2000 - 2011 Web Doodle, LLC. All rights reserved.