Nanite News
Recent News |  Archives |  Tags |  About |  Newsletter |  Links | 
New Articles
Nanostructure boosts efficiency in energy transport 3/4/2009

Nano-sonar uses electrons to measure under the surface 3/1/2009

Researchers use nano-origami to build tiny electronic devices 2/28/2009

Nanotechnologists gain powerful new materials probe 2/27/2009

Models present new view of nanoscale friction 2/26/2009

Gold-palladium nanoparticles achieve greener, smarter production of hydrogen peroxide 2/24/2009

Pitt researchers create atomic-sized one-stop shop for nanoelectronics 2/23/2009

New method of self-assembling nanoscale elements could transform data storage industry 2/23/2009

New imaging technique reveals the atomic structure of nanocrystals 2/22/2009

Sophisticated nano-structures assembled with magnets 2/21/2009

Nanoparticles double their chances of getting into sticky situations 2/20/2009

Nanoparticle toxicity doesn't get wacky at the smallest sizes 2/19/2009

Scientists prove graphene's edge structure affects electronic properties 2/18/2009

Nanogenerators produce electricity from running rodents and tapping fingers 2/18/2009

Chemists create two-armed nanorobotic device to maneuver world's tiniest particles 2/17/2009

Nano-sonar uses electrons to measure under the surface (3/1/2009)

Tags:
materials
This is the Fermi surface around a cobalt atom embedded in copper. The colors represent the curvature of the surface, which determines the reflection properties for electron waves. - Forschungszentrum Jülich
This is the Fermi surface around a cobalt atom embedded in copper. The colors represent the curvature of the surface, which determines the reflection properties for electron waves. - Forschungszentrum Jülich

Just as sonar sends out sound waves to explore the hidden depths of the ocean, electrons can be used by scanning tunneling microscopes to investigate the well-hidden properties of the atomic lattice of metals. As researchers from Göttingen, Halle and Jülich now report in the high-impact journal "Science", they succeeded in making bulk Fermi surfaces visible in this manner. Fermi surfaces determine the most important properties of metals.

"Fermi surfaces give metals their personality, so to speak," explained Prof. Stefan Blügel, Director at the Jülich Institute of Solid State Research. Important properties, such as conductivity, heat capacity and magnetism, are determined by them. On the Fermi surfaces inside the atomic union, high-energy electrons are in motion. Depending on what form the surfaces have and what mobility is assigned to the electrons, they determine the physical properties of metals.

In their latest publication, the researchers report on how they used a scanning tunnelling microscope to direct electrons into a copper sample. As electrons spread out like waves, they pass through the metal and are scattered and reflected at obstacles in the bulk, such as single cobalt atoms. "The overlap between incoming and outgoing waves is so strong," said Dr. Samir Lounis from Forschungszentrum Jülich who turned the theoretical calculations into an experiment, "that they can be measured as spherical patterns on the surface using the scanning tunneling

The somewhat deformed rings on the surface allow us to draw direct conclusions on the shape of the Fermi surfaces and the depth of the cobalt atoms, similar to how sonar recognizes the ocean floor by means of reflected sound waves. "We hope that more sophisticated methods will make it possible to gain a detailed understanding of deep impurities and interfaces between atomic lattices," explained Lounis. For his simulations of the scanning tunnelling experiment, he used the supercomputer known as JUMP in the Jülich Supercomputing Centre.

In a related article in the "Perspectives" section of "Science", the innovative approach is praised. A scanning tunneling microscope is primarily used to characterize the surface of a sample. Thanks to the theoretical work in Jülich, it can now be used to gain a direct insight into the bulk of solids and to understand interesting effects in the nanoworld.

Note: This story has been adapted from a news release issued by the Helmholtz Association of German Research Centres

Internet Marketing - Life Insurance - Credit Card Consolidation -

Post Comments:

Search



Archives
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007


Science Friends
Astronomy News

Cognitive Research
Chemistry News
Tissue Engineering
Cancer Research
Geology News
Physics News
  Archives |  Advertise With Us |  Contact Us |  Links
All contents © 2000 - 2010 Web Doodle, LLC. All rights reserved.