Nanite News
Recent News |  Archives |  Tags |  About |  Newsletter |  Links | 
New Articles
New imaging technique reveals the atomic structure of nanocrystals 2/22/2009

Sophisticated nano-structures assembled with magnets 2/21/2009

Nanoparticles double their chances of getting into sticky situations 2/20/2009

Nanoparticle toxicity doesn't get wacky at the smallest sizes 2/19/2009

Scientists prove graphene's edge structure affects electronic properties 2/18/2009

Nanogenerators produce electricity from running rodents and tapping fingers 2/18/2009

Chemists create two-armed nanorobotic device to maneuver world's tiniest particles 2/17/2009

New silver-based ink has applications in electronics, researchers say 2/17/2009

Nanoscale materials grow with the flow 2/16/2009

Viscosity-enhancing nanomaterials may double service life of concrete 2/15/2009

Engineers revolutionize nano-device fabrication using amorphous metals 2/14/2009

Molecular machines drive plasmonic nanoswitches 2/13/2009

Research highlights potential for improved solar cells 2/12/2009

Batteries get a boost at Rice 2/10/2009

Carbon nanotube avalanche process nearly doubles current 2/10/2009

Nanoparticle toxicity doesn't get wacky at the smallest sizes (2/19/2009)

Tags:
nanoparticles

The smallest nano-sized silica particles used in biomedicine and engineering likely won't cause unexpected biological responses due to their size, according to work presented today. The result should allay fears that cells and tissues will react unpredictably when exposed to the finest silica nanomaterials in industrial or commercial applications.

Nanotoxicologist Brian Thrall and colleagues found that, mostly, size doesn't matter, by using total surface area as a measure of dose, rather than particle mass or number of particles, and observing how cultured cells responded biologically.

"If you consider surface area as the dose metric, then you get similar types of responses independent of the size of the particle," said Thrall, a scientist at the Department of Energy's Pacific Northwest National Laboratory in Richland, Wash. "That suggests the chemistry that drives the biological responses doesn't change when you get down to the smallest nanoparticle."

Nanoparticles are materials made up of spherical particles that are on average 100 to 1,000 times smaller than the width of a human hair. They are being used in tires, biomedical research, and cosmetics. Researchers are exploring these tiny spheres because their physical and chemical properties at that size offer advantages that standard materials don't, such as being able to float through blood vessels to deliver drugs.

But whether these materials are safe for human consumption is not yet clear. Previous work suggested in some cases, nanoparticles become more toxic to cells the smaller the particles get.

Thrall presented this toxicology data on amorphous silica nanoparticles today at the 2009 American Association for the Advancement of Science's annual meeting. He also presented data on which cellular proteins the nanoparticles use to get inside cells.

One difficulty in measuring toxicity is that not everyone agrees which kind of dose unit to compare. Some researchers measure the dose by total weight, some by the number of particles. Neither method distinguishes whether a nanomaterial's toxicity is due to the inherent nature of the material or the particle size under scrutiny.

"Different dose metrics give different impressions of which particles are more toxic," he said.

To find out, Thrall and his colleagues at PNNL measured the dose at which the particles caused a biological response. The biological response was either death of the cell, or a change in which genes the cell turned on and off. They found that when calculating doses by particle number or mass, the amount needed to generate a biological response was all over the map.

They found that the best way to pinpoint how toxic the particles are to cells was to calculate the dose based on the total surface area of the nanomaterial. Only when they considered the surface area of the dose could they predict the biological response.

And the biological response, they found, was very similar regardless of the size of the nanoparticles. Inside cells, some genes responded to nanoparticles by ramping up or down. More than 76 percent of these genes behaved the same for all nanoparticle sizes tested. This indicated to the researchers that, for these genes, the nanoparticles didn't pick up weird chemical properties as they shrunk in size.

"The big fear is that you'd see unique biological pathways being affected when you get down to the nanoscale. For the most part, we didn't see that," said Thrall.

However, the team found some genes for which size did matter. A handful of genes, these fell into two categories: smaller particles appeared to affect genes that might be involved in inflammation. The larger particles appeared to affect genes that transport positively charged atoms into cells. This latter result could be due to metals contaminating the preparation of the larger particles, Thrall suggested.

Overall, the results contribute to a better understanding of what goes on at the nanoscale.

Note: This story has been adapted from a news release issued by the DOE/Pacific Northwest National Laboratory

Debt Consolidation - Credit Counseling - Internet Marketing - Loans

Post Comments:

Search



Archives
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007


Science Friends
Astronomy News

Cognitive Research
Chemistry News
Tissue Engineering
Cancer Research
Geology News
Physics News
  Archives |  Advertise With Us |  Contact Us |  Links
All contents © 2000 - 2010 Web Doodle, LLC. All rights reserved.