Nanite News
Recent News |  Archives |  Tags |  About |  Newsletter |  Links | 


More Articles


Scientists discover 'catastrophic event' behind the halt of star birth in early galaxy formationScientists discover 'catastrophic event' behind the halt of star birth in early galaxy formation

Predicting the fate of stem cellsPredicting the fate of stem cells


Fish can recognize a face based on UV pattern aloneFish can recognize a face based on UV pattern alone

Ancient DNA from rare fossil reveals that polar bears evolved recently and adapted quicklyAncient DNA from rare fossil reveals that polar bears evolved recently and adapted quickly

'Anaconda' meets 'Jurassic Park': Study shows ancient snakes ate dinosaur babies'Anaconda' meets 'Jurassic Park': Study shows ancient snakes ate dinosaur babies

Scientists locate apparent hydrothermal vents off AntarcticaScientists locate apparent hydrothermal vents off Antarctica


Juggling enhances connections in the brainJuggling enhances connections in the brain

Tracking down the human 'odorprint'Tracking down the human 'odorprint'

Fill 'er up - with algaeFill 'er up - with algae

Scientists discover quantum fingerprints of chaosScientists discover quantum fingerprints of chaos

Researchers help identify cows that gain more while eating lessResearchers help identify cows that gain more while eating less

With support, graphene still a superior thermal conductor (4/11/2010)

Tags:
graphene
A one-atom thick sheet of graphene (highlighted in the circular window) on top of a silicon dioxide support proves to be an excellent thermal conductor, according to new research published in the journal <I>Science.<I> Although the interaction with the silicon dioxide suppressed the thermal conductivity of graphene compared to its freestanding form, supported graphene still demonstrated much higher heat conducting capability than silicon and copper nanostructures. This finding combined with graphene's superior strength and electron mobility make it a promising candidate for use in next-generation nano-electronic devices. - University of Texas at Austin
A one-atom thick sheet of graphene (highlighted in the circular window) on top of a silicon dioxide support proves to be an excellent thermal conductor, according to new research published in the journal Science. Although the interaction with the silicon dioxide suppressed the thermal conductivity of graphene compared to its freestanding form, supported graphene still demonstrated much higher heat conducting capability than silicon and copper nanostructures. This finding combined with graphene's superior strength and electron mobility make it a promising candidate for use in next-generation nano-electronic devices. - University of Texas at Austin

The single-atom thick material graphene maintains its high thermal conductivity when supported by a substrate, a critical step to advancing the material from a laboratory phenomenon to a useful component in a range of nano-electronic devices, researchers report in the April 9 issue of the journal Science.

The team of engineers and theoretical physicists from the University of Texas at Austin, Boston College, and France's Commission for Atomic Energy report the super-thin sheet of carbon atoms - taken from the three-dimensional material graphite - can transfer heat more than twice as efficiently as copper thin films and more than 50 times better than thin films of silicon.

Since its discovery in 2004, graphene has been viewed as a promising new electronic material because it offers superior electron mobility, mechanical strength and thermal conductivity. These characteristics are crucial as electronic devices become smaller and smaller, presenting engineers with a fundamental problem of keeping the devices cool enough to operate efficiently.

The research advances the understanding of graphene as a promising candidate to draw heat away from "hot spots" that form in the tight knit spaces of devices built at the micro and nano scales. From a theoretical standpoint, the team also developed a new view of how heat flows in graphene.

When suspended, graphene has extremely high thermal conductivity of 3,000 to 5,000 watts per meter per Kelvin. But for practical applications, the chicken-wire like graphene lattice would be attached to a substrate. The team found supported graphene still has thermal conductivity as high as 600 watts per meter per Kelvin near room temperature. That far exceeds the thermal conductivities of copper, approximately 250 watts, and silicon, only 10 watts, thin films currently used in electronic devices.

The loss in heat transfer is the result of graphene's interaction with the substrate, which interferes with the vibrational waves of graphene atoms as they bump against the adjacent substrate, according to co-author David Broido, a Boston College Professor of Physics.

The conclusion was drawn with the help of earlier theoretical models about heat transfer within suspended graphene, Broido said. Working with former BC graduate student Lucas Lindsay, now an instructor at Christopher Newport University, and Natalio Mingo of France's Commission for Atomic Energy, Broido re-examined the theoretical model devised to explain the performance of suspended graphene.

"As theorists, we're much more detached from the device or the engineering side. We're more focused on the fundamentals that explain how energy flows through a sheet graphene. We took our existing model for suspended graphene and expanded the theoretical model to describe this interaction that takes place between graphene and the substrate and the influence on the movement of heat through the material and, ultimately, it's thermal conductivity."

In addition to its superior strength, electron mobility and thermal conductivity, graphene is compatible with thin film silicon transistor devices, a crucial characteristic if the material is to be used in low-cost, mass production. Graphene nano-electronic devices have the potential to consume less energy, run cooler and more reliably, and operate faster than the current generation of silicon and copper devices.

Note: This story has been adapted from a news release issued by the Boston College

Post Comments:

Search

New Articles
Scientists develop environmentally friendly way to produce propylene oxide using silver nanoclustersScientists develop environmentally friendly way to produce propylene oxide using silver nanoclusters

With support, graphene still a superior thermal conductorWith support, graphene still a superior thermal conductor

Graphene films clear major fabrication hurdleGraphene films clear major fabrication hurdle

'Nanovaccine' reverses autoimmunity without general immunosuppression

Evidence that nanoparticles in sunscreens could be toxic if accidentally eatenEvidence that nanoparticles in sunscreens could be toxic if accidentally eaten

Cold atoms and nanotubes come together in an atomic 'black hole'Cold atoms and nanotubes come together in an atomic 'black hole'

New study on carbon nanotubes gives hope for medical applicationsNew study on carbon nanotubes gives hope for medical applications

Discovering new tools for nanoscience

Carbon nanostructures -- elixir or poison?

Scientists address 'wrinkles' in transparent film developmentScientists address 'wrinkles' in transparent film development

Researchers use improved nanogenerators to power sensors based on zinc oxide nanowiresResearchers use improved nanogenerators to power sensors based on zinc oxide nanowires

A more sensitive sensorA more sensitive sensor

From pollutant to profit -- nanoscience turns carbon on its head

Chemist monitors nanotechnology's environmental impactChemist monitors nanotechnology's environmental impact

Incorporating biofunctionality into nanomaterials for medical, health devicesIncorporating biofunctionality into nanomaterials for medical, health devices



Archives
April 2010
March 2010
February 2010
January 2010
December 2009
November 2009
October 2009
September 2009
August 2009
July 2009
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007


Science Friends
Agricultural Science
Astronomy News
Biology News

Cognitive Research
Chemistry News
Tissue Engineering
Cancer Research

Forensics Report
Fossil News
Genetic Archaeology

Geology News
Physics News


  Archives |  Advertise With Us |  Contact Us |  Links
Use of this site constitutes acceptance of our Terms of Service and Privacy Policy. All contents © 2000 - 2011 Web Doodle, LLC. All rights reserved.