Nanite News
Recent News |  Archives |  Tags |  About |  Newsletter |  Links | 


More Articles


Scientists discover 'catastrophic event' behind the halt of star birth in early galaxy formationScientists discover 'catastrophic event' behind the halt of star birth in early galaxy formation

Predicting the fate of stem cellsPredicting the fate of stem cells


Fish can recognize a face based on UV pattern aloneFish can recognize a face based on UV pattern alone

Ancient DNA from rare fossil reveals that polar bears evolved recently and adapted quicklyAncient DNA from rare fossil reveals that polar bears evolved recently and adapted quickly

'Anaconda' meets 'Jurassic Park': Study shows ancient snakes ate dinosaur babies'Anaconda' meets 'Jurassic Park': Study shows ancient snakes ate dinosaur babies

Scientists locate apparent hydrothermal vents off AntarcticaScientists locate apparent hydrothermal vents off Antarctica


Juggling enhances connections in the brainJuggling enhances connections in the brain

Tracking down the human 'odorprint'Tracking down the human 'odorprint'

Fill 'er up - with algaeFill 'er up - with algae

Scientists discover quantum fingerprints of chaosScientists discover quantum fingerprints of chaos

Researchers help identify cows that gain more while eating lessResearchers help identify cows that gain more while eating less

Cold atoms and nanotubes come together in an atomic 'black hole' (4/7/2010)

Tags:
nanotubes, nanowires
Launched laser-cooled atoms are captured by a single, suspended, single-wall carbon nanotube charged to hundreds of volts. A captured atom spirals towards the nanotube (white path) and reaches the environs of the tube surface, where its valence electron (yellow) tunnels into the tube. The resulting ion (purple) is ejected and detected, and the dynamics at the nanoscale are sensitively probed. - Anne Goodsell and Tommi Hakala/Harvard University
Launched laser-cooled atoms are captured by a single, suspended, single-wall carbon nanotube charged to hundreds of volts. A captured atom spirals towards the nanotube (white path) and reaches the environs of the tube surface, where its valence electron (yellow) tunnels into the tube. The resulting ion (purple) is ejected and detected, and the dynamics at the nanoscale are sensitively probed. - Anne Goodsell and Tommi Hakala/Harvard University

Carbon nanotubes, long touted for applications in materials and electronics, may also be the stuff of atomic-scale black holes.

Physicists at Harvard University have found that a high-voltage nanotube can cause cold atoms to spiral inward under dramatic acceleration before disintegrating violently. Their experiments, the first to demonstrate something akin to a black hole at atomic scale, are described in the current issue of the journal Physical Review Letters.

"On a scale of nanometers, we create an inexorable and destructive pull similar to what black holes exert on matter at cosmic scales," says Lene Vestergaard Hau, Mallinckrodt Professor of Physics and of Applied Physics at Harvard. "As importantly for scientists, this is the first merging of cold-atom and nanoscale science, and it opens the door to a new generation of cold atom experiments and nanoscale devices."

Hau and co-authors Anne Goodsell, Trygve Ristroph, and Jene A. Golovchenko laser-cooled clouds of one million rubidium atoms to just a fraction of a degree above absolute zero. The physicists then launched this millimeter-long atomic cloud towards a suspended carbon nanotube, located some two centimeters away and charged to hundreds of volts.

The vast majority of the atoms passed right by the wire, but those that came within a micron of it -- roughly 10 atoms in every million-atom cloud -- were inescapably attracted, reaching high speeds as they spiraled toward the nanotube.

"From a start at about 5 meters per second, the cold atoms reach speeds of roughly 1,200 meters per second, or more than 2,700 miles per hour, as they circle the nanotube," says Goodsell, a graduate student on the project and now a postdoctoral researcher in physics at Harvard. "As part of this tremendous acceleration, the temperature corresponding to the atoms' kinetic energy increases from 0.1 degrees Kelvin to thousands of degrees Kelvin in less than a microsecond."

At this point, the speeding atoms separate into an electron and an ion rotating in parallel around the nanowire, completing each orbit in just a few trillionths of a second. The electron eventually gets sucked into the nanotube via quantum tunneling, causing its companion ion to shoot away -- repelled by the strong charge of the 300-volt nanotube -- at a speed of roughly 26 kilometers per second, or 59,000 miles per hour.

The entire experiment was conducted with great precision, allowing the scientists unprecedented access to both cold-atom and nanoscale processes.

"Cold-atom and nanoscale science have each provided exciting new systems for study and applications," says Golovchenko, Rumford Professor of Physics and Gordon McKay Professor of Applied Physics at Harvard. "This is the first experimental realization of a combined cold atom-nanostructure system. Our system demonstrates sensitive probing of atom, electron, and ion dynamics at the nanoscale."

The single-walled carbon nanotube used in these researchers' successful experiment was dubbed "Lucy," and its contributions are acknowledged in the Physical Review Letters paper. The nanotube was grown by chemical vapor deposition across a 10-micron gap in a silicon chip that provides the nanowire with both mechanical support and electrical contact.

"From the atom's point of view, the nanotube is infinitely long and thin, creating a singular effect on the atom," Hau says.

Note: This story has been adapted from a news release issued by the Harvard University

Post Comments:

Search

New Articles
'Nanovaccine' reverses autoimmunity without general immunosuppression

Evidence that nanoparticles in sunscreens could be toxic if accidentally eatenEvidence that nanoparticles in sunscreens could be toxic if accidentally eaten

Cold atoms and nanotubes come together in an atomic 'black hole'Cold atoms and nanotubes come together in an atomic 'black hole'

New study on carbon nanotubes gives hope for medical applicationsNew study on carbon nanotubes gives hope for medical applications

Discovering new tools for nanoscience

Carbon nanostructures -- elixir or poison?

Scientists address 'wrinkles' in transparent film developmentScientists address 'wrinkles' in transparent film development

Researchers use improved nanogenerators to power sensors based on zinc oxide nanowiresResearchers use improved nanogenerators to power sensors based on zinc oxide nanowires

A more sensitive sensorA more sensitive sensor

From pollutant to profit -- nanoscience turns carbon on its head

Chemist monitors nanotechnology's environmental impactChemist monitors nanotechnology's environmental impact

Incorporating biofunctionality into nanomaterials for medical, health devicesIncorporating biofunctionality into nanomaterials for medical, health devices

Designer nanomaterials on-demandDesigner nanomaterials on-demand

Silver proves its mettle for nanotech applicationsSilver proves its mettle for nanotech applications

Engineers: Weak laser can ignite nanoparticles, with exciting possibilities



Archives
April 2010
March 2010
February 2010
January 2010
December 2009
November 2009
October 2009
September 2009
August 2009
July 2009
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007


Science Friends
Agricultural Science
Astronomy News
Biology News

Cognitive Research
Chemistry News
Tissue Engineering
Cancer Research

Forensics Report
Fossil News
Genetic Archaeology

Geology News
Physics News


  Archives |  Advertise With Us |  Contact Us |  Links
Use of this site constitutes acceptance of our Terms of Service and Privacy Policy. All contents © 2000 - 2011 Web Doodle, LLC. All rights reserved.