Nanite News
Recent News |  Archives |  Tags |  About |  Newsletter |  Links | 


More Articles

Study examines family lineage of King Tut, his possible cause of deathStudy examines family lineage of King Tut, his possible cause of death


The book of life can now literally be written on paperThe book of life can now literally be written on paper

Scientists discover largest orb-weaving spiderScientists discover largest orb-weaving spider

Juggling enhances connections in the brainJuggling enhances connections in the brain

How the Moon produces its own waterHow the Moon produces its own water

Giant impact near India - not Mexico - may have doomed dinosaursGiant impact near India - not Mexico - may have doomed dinosaurs


A 200,000-year-old cut of meatA 200,000-year-old cut of meat

Tracking down the human 'odorprint'Tracking down the human 'odorprint'

Fill 'er up - with algaeFill 'er up - with algae

Scientists discover quantum fingerprints of chaosScientists discover quantum fingerprints of chaos

Researchers help identify cows that gain more while eating lessResearchers help identify cows that gain more while eating less

Scientists glimpse nanobubbles on super non-stick surfaces (3/4/2010)

Tags:
nanocavities, nanobubbles, hydrophobic
In this picture, the central image is the optical profile of a water drop placed on 'nanopitted' silicon; the right image is a scanning electron micrograph of the nanocavities; and the left image is a cartoon illustrating the nanobubbles' shape as inferred from x-ray measurements.
In this picture, the central image is the optical profile of a water drop placed on 'nanopitted' silicon; the right image is a scanning electron micrograph of the nanocavities; and the left image is a cartoon illustrating the nanobubbles' shape as inferred from x-ray measurements.

Scientists at the U.S. Department of Energy's Brookhaven National Laboratory have obtained the first glimpse of miniscule air bubbles that keep water from wetting a super non-stick surface. Detailed information about the size and shape of these bubbles - and the non-stick material the scientists created by "pock-marking" a smooth material with cavities measuring mere billionths of a meter - is being published online today in the journal Nano Letters.

"Our results explain how these nanocavities trap tiny bubbles which render the surface extremely water repellent," said Brookhaven physicist and lead author Antonio Checco. The research could lead to a new class of non-stick materials for a range of applications, including improved-efficiency power plants, speedier boats, and surfaces that are resistant to contamination by germs.

Non-stick surfaces are important to many areas of technology, from drag reduction to anti-icing agents. These surfaces are usually created by applying coatings, such as Teflon, to smooth surfaces. But recently - taking the lead from observations in nature, notably the lotus leaf and some varieties of insects - scientists have realized that a bit of texture can help. By incorporating topographical features on surfaces, they've created extremely water repellant materials.

"We call this effect 'superhydrophobicity,'" said Brookhaven physicist Benjamin Ocko. "It occurs when air bubbles remain trapped in the textured surfaces, thereby drastically reducing the area of liquid in contact with the solid." This forces the water to ball up into pearl shaped drops, which are weakly connected to the surface and can readily roll off, even with the slightest incline.

"To get the first glimpse of nanobubbles on a superhydrophobic surface we created a regular array of more than a trillion nano-cavities on an otherwise flat surface, and then coated it with a wax-like surfactant," said Charles Black, a physicist at Brookhaven's [http://www.bnl.gov/cfn/] Center for Functional Nanometerials .

This coated, nanoscale textured surface was much more water repellant than the flat surface alone, suggesting the existence of nanobubbles. However, because the nanoscale is not accessible using ordinary microscopes, little is known about these nanobubbles.

To unambiguously prove that these ultra-small bubbles were present, the Brookhaven team carried out x-ray measurements at the [http://www.nsls.bnl.gov] National Synchrotron Light Source . "By watching how the x-rays diffracted, or bounced off the surface, we are able to image extremely small features and show that the cavities were mostly filled with air," said Brookhaven physicist Elaine DiMasi.

Checco added, "We were surprised that water penetrates only about 5 to 10 nanometers into the cavities - an amount corresponding to only 15 to 30 layers of water molecules - independent of the depth of the cavities. This provides the first direct evidence of the morphology of such small bubbles."

According to the scientists' observations, the bubbles are only about 10 nanometers in size - about ten thousand times smaller than the width of a single human hair. And the team's results conclusively show that these tiny bubbles have nearly flat tops. This is in contrast to larger, micrometer-sized bubbles, which have a more rounded top.

"This flattened configuration is appealing for a range of applications because it is expected to increase hydrodynamic slippage past the nanotextured surface," Checco said. "Moreover, the fact that water hardly penetrates into the nano-textures, even if an external pressure is applied to the liquid, implies that these nanobubbles are very stable."

Therefore, in contrast to materials with larger, micrometer-sized textures, the surfaces fabricated by the Brookhaven team may exhibit more stable superhydrophobic properties.

"These findings provide a better understanding of the nanoscale aspects of superhydropobicity, which should help to improve the design of future superhydrophobic non-stick surfaces," Checco said.

Note: This story has been adapted from a news release issued by the DOE/Brookhaven National Laboratory

Post Comments:

Search

New Articles
Nanotechnologists collaborate to form near-frictionless diamond materialNanotechnologists collaborate to form near-frictionless diamond material

The toxicity of antimicrobial silver in products can be reduced

Stressed nanomaterials display unexpected movementStressed nanomaterials display unexpected movement

Nanotechnology sparks energy storage on paper and clothNanotechnology sparks energy storage on paper and cloth

Nanotechnology could help Arab region

Attacking cancer cells with hydrogel nanoparticlesAttacking cancer cells with hydrogel nanoparticles

Using gold nanoparticles to hit cancer where it hurts

Lou's clues lead to nano revelationLou's clues lead to nano revelation

Silicon-coated nanonets could build a better lithium-ion batterySilicon-coated nanonets could build a better lithium-ion battery

For nanowires, nothing sparkles quite like diamond

New fiber nanogenerators could lead to electric clothingNew fiber nanogenerators could lead to electric clothing

New sensor exploits traditional weakness of nano devices

Material scientists turn light into electrical current using a golden nanoscale systemMaterial scientists turn light into electrical current using a golden nanoscale system

Single-step technique produces both p-type and n-type doping for future graphene devicesSingle-step technique produces both p-type and n-type doping for future graphene devices

Research may lead to new ways to transport and manipulate moleculesResearch may lead to new ways to transport and manipulate molecules



Archives
March 2010
February 2010
January 2010
December 2009
November 2009
October 2009
September 2009
August 2009
July 2009
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007


Science Friends
Agricultural Science
Astronomy News
Biology News

Cognitive Research
Chemistry News
Tissue Engineering
Cancer Research

Forensics Report
Fossil News
Genetic Archaeology

Geology News
Physics News


  Archives |  Advertise With Us |  Contact Us |  Links
Use of this site constitutes acceptance of our Terms of Service and Privacy Policy. All contents © 2000 - 2011 Web Doodle, LLC. All rights reserved.