Nanite News
Recent News |  Archives |  Tags |  About |  Newsletter |  Links | 


More Articles
Tracking down the human 'odorprint'Tracking down the human 'odorprint'

Researchers help identify cows that gain more while eating lessResearchers help identify cows that gain more while eating less


Scientists discover largest orb-weaving spiderScientists discover largest orb-weaving spider

A 200,000-year-old cut of meatA 200,000-year-old cut of meat

Fill 'er up - with algaeFill 'er up - with algae

Scientists discover quantum fingerprints of chaosScientists discover quantum fingerprints of chaos


Giant impact near India - not Mexico - may have doomed dinosaursGiant impact near India - not Mexico - may have doomed dinosaurs

How the Moon produces its own waterHow the Moon produces its own water

Juggling enhances connections in the brainJuggling enhances connections in the brain


Why sex with a partner is betterWhy sex with a partner is better

The book of life can now literally be written on paperThe book of life can now literally be written on paper

Research may lead to new ways to transport and manipulate molecules (2/15/2010)

Tags:
nanomotors, proteins
Dr. Eric Blough of Marshall University and his colleagues have shown how bionanomotors can be used some day to move and manipulate molecules at the nanoscale. - Rick Haye, Marshall University
Dr. Eric Blough of Marshall University and his colleagues have shown how bionanomotors can be used some day to move and manipulate molecules at the nanoscale. - Rick Haye, Marshall University

A group of Marshall University researchers and their colleagues in Japan are conducting research that may lead to new ways to move or position single molecules-a necessary step if man someday hopes to build molecular machines or other devices capable of working at very small scales.

Dr. Eric Blough, a member of the research team and an associate professor in Marshall University's Department of Biological Sciences, said his group has shown how bionanomotors can be used some day to move and manipulate molecules at the nanoscale.

Their research will be published in the Feb. 5 issue of the research journal Small.

"Being able to manipulate a single molecule under controlled conditions is actually a pretty big challenge," said Blough. "It's not quite the same, but imagine trying to pick up a single sewing needle off the ground with a huge steam shovel, and doing it so that you pick up the needle and nothing else. Or, to put it another way-how do you manipulate something that is very tiny with something that is very big? We decided to try and get around this problem by seeing if it was possible to use single molecules to move other single molecules."

"What we are trying to replicate in the lab is something that nature has been doing for millions of years-cells use bionanomotors all the time to move things around," he said.

Blough describes bionanomotors as naturally occurring tiny "machines" that convert chemical energy directly into mechanical work. A nanometer is about 1/100,000 the width of a human hair. A nanomotor is similarly sized and operates at the smallest of small scales.

"Our muscles are living proof of how bionanomotors can be harnessed to do useful work," he added.

In the lab, Blough and his colleagues used myosin-a protein found in muscle that is responsible for generating the force of muscle contraction-as the motor, and actin-another protein isolated from muscle-as the carrier.

Using a technique to make a pattern of active myosin molecules on a surface, they showed how cargo-they used small beads-could be attached to actin filaments and moved from one part of the surface to another. To improve the system, they also used actin filaments they had bundled together.

"When we first started our work, we noticed that single actin filaments moved randomly," said Dr. Hideyo Takatsuki, lead author of the journal article and a postdoctoral fellow in Blough's laboratory. "To be able to transport something from point A to point B effectively you need to be able to have some control over the movement. The actin filaments are so flexible that it is difficult to control their motion but we found that if we bundled a bunch of them together, the movement of the filaments was almost straight."

In addition, the team also showed they could use light to control the movement of the filaments.

"For a transport system to work efficiently, you really need to have the ability to stop the carrier to pick up cargo, as well as the means to stop transport when you arrive at your destination," added Takatsuki.

To control the movement, they chose to exploit the chemical properties of another molecule called blebbistatin.

"Blebbistatin is an inhibitor of myosin and can be switched on and off by light," Blough said. "We found that we could stop and start movement by changing how the system was illuminated."

According to Blough, the long-range goal of the team's work is to develop a platform for the development of a wide range of nanoscale transport and sensing applications in the biomedical field.

"The promise of nanotechnology is immense," he said. "Someday it might be possible to perform diagnostic tests using incredibly small amounts of sample that can be run in a very short period of time and with a high degree of accuracy. The implications for improving human health are incredible."

Blough added that although their recent work is a step forward, there is still a long way to go.

"A number of further advancements are necessary before bionanomotors can be used for 'lab-on-a-chip' applications," he said. "It's a challenging problem, but that is one of the great things about science-every day is new and interesting."

Note: This story has been adapted from a news release issued by the Marshall University Research Corporation

Post Comments:

Search

New Articles
Research may lead to new ways to transport and manipulate molecules 2/15/2010

Digging deep into diamonds, applied physicists advance quantum science and technology 2/15/2010

Silver nanoparticles may one day be key to devices that keep hearts beating strong and steady 2/12/2010

Researchers develop nanoscale structures with superior mechanical properties 2/11/2010

Big book explores a small world: Stuart Lindsay's guide to nanoscience 2/10/2010

Physicists kill cancer with 'nanobubbles' 2/9/2010

Nano imagining takes turn for the better 2/6/2010

Nano for the senses 2/5/2010

Magnetic nanoparticles show promise for combating human cancer 2/4/2010

Summit examines vast applications of nanomedicine 2/3/2010

Engineers explore environmental concerns of nanotechnology 2/2/2010

How many argon atoms can fit on the surface of a carbon nanotube? 1/29/2010

Conference to discuss future of nanotechnology enabled sensors 1/23/2010

European collaboration makes breakthrough in developing super-material graphene 1/20/2010

New nanoparticles target cardiovascular disease 1/19/2010


Archives
February 2010
January 2010
December 2009
November 2009
October 2009
September 2009
August 2009
July 2009
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007


Science Friends
Agricultural Science
Astronomy News
Biology News

Cognitive Research
Chemistry News
Tissue Engineering
Cancer Research

Forensics Report
Fossil News
Genetic Archaeology

Geology News
Physics News


  Archives |  Advertise With Us |  Contact Us |  Links
Use of this site constitutes acceptance of our Terms of Service and Privacy Policy. All contents © 2000 - 2011 Web Doodle, LLC. All rights reserved.