Nanite News
Recent News |  Archives |  Tags |  About |  Newsletter |  Links | 
More Articles

Study examines family lineage of King Tut, his possible cause of deathStudy examines family lineage of King Tut, his possible cause of death


The book of life can now literally be written on paperThe book of life can now literally be written on paper

Scientists discover largest orb-weaving spiderScientists discover largest orb-weaving spider

Juggling enhances connections in the brainJuggling enhances connections in the brain

How the Moon produces its own waterHow the Moon produces its own water

Giant impact near India - not Mexico - may have doomed dinosaursGiant impact near India - not Mexico - may have doomed dinosaurs


A 200,000-year-old cut of meatA 200,000-year-old cut of meat

Tracking down the human 'odorprint'Tracking down the human 'odorprint'

Fill 'er up - with algaeFill 'er up - with algae

Scientists discover quantum fingerprints of chaosScientists discover quantum fingerprints of chaos

Researchers help identify cows that gain more while eating lessResearchers help identify cows that gain more while eating less



Attacking cancer cells with hydrogel nanoparticles (2/23/2010)

Tags:
hydrogels, nanoparticles, medicine
This is an artistic rendering of hydrogel nanoparticles. - L. Andrew Lyon/Georgia Tech
This is an artistic rendering of hydrogel nanoparticles. - L. Andrew Lyon/Georgia Tech

One of the difficulties of fighting cancer is that drugs often hit other non-cancerous cells, causing patients to get sick. But what if researchers could sneak cancer-fighting particles into just the cancer cells? Researchers at the Georgia Institute of Technology and the Ovarian Cancer Institute are working on doing just that. In the online journal BMC Cancer they detail a method that uses hydrogels - less than 100 nanometers in size - to sneak a particular type of small interfering RNA(siRNA) into cancer cells. Once in the cell the siRNA turns on the programmed cell death the body uses to kill mutated cells and help traditional chemotherapy do it's job.

Many cancers are characterized by an over abundance of epidermal growth factor receptors (EGFR). When the EGFR level in a cell is elevated it tells the cell to replicate at a rapid rate. It also turns down apoptosis, or programmed cell death.

"With our technique we're inhibiting EGFR's growth, with small interfering RNA. And by inhibiting it's growth, we're increasing the cells's apoptotic function. If we hit the cell with chemotherapy at the same time, we should be able to kill the cancer cells more effectively," said John McDonald, professor at the School of Biology at Georgia Tech and chief research scientist at the Ovarian Cancer Institute.

Small interfering RNA is good at shutting down EGFR production, but once inside the cell siRNA has a limited life span. Keeping it protected inside the hydrogel nanoparticles allows them to get into the cancer cell safely and acts as a protective barrier around them. The hydrogel releases only a small amount of siRNA at a time, ensuring that while some are out in the cancer cell doing their job, reinforcements are held safely inside the nanoparticle until it's time to do their job.

"It's like a Trojan horse," said L. Andrew Lyon, professor in the School of Chemistry and Biochemistry at Georgia Tech. "We've decorated the surface of these hydrogels with a ligand that tricks the cancer cell into taking it up. Once inside, the particles have a slow release profile that leaks out the siRNA over a timescale of days, allowing it to have a therapeutic effect."

Cells use the messenger RNA (mRNA) to generate proteins, which help to keep the cell growing. Once the siRNA enters the cell, it binds to the mRNA and recruits proteins that attack the siRNA-mRNA complex. But the cancer cell's not finished; it keeps generating proteins, so without a continuous supply of siRNA, the cell recovers. Using the hydrogel to slowly release the siRNA allows it to keep up a sustained attack so that it can continue to interrupt the production of proteins.

"We've shown that you can get knock down out to a few days time frame, which could present a clinical window to come in and do multiple treatments in a combination chemotherapy approach," said Lyon.

"The fact that this system is releasing the siRNA slowly, without giving the cell time to immediately recover, gives us much better efficiency at killing the cancer cells with chemotherapy," added McDonald.

Previous techniques have involved using antibodies to knock down the proteins.

"But oftentimes, a mutation may arise in the targeted gene such that the antibody will no longer have the effect it once did, thereby increasing the chance for recurrence," said McDonald.

The team used hydrogels because they're non-toxic, have a relatively slow release rate, and can survive in the body long enough to reach their target.

"It's a well-defined architecture that you're using the intrinsic porosity of that material to load things into, and since our particles are about 98 percent water by volume, there's plenty of internal volume in which to load things," said Lyon.

Currently, the tests have been shown to work in vitro, but the team will be initiating tests in vivo shortly.

Note: This story has been adapted from a news release issued by the Georgia Institute of Technology

Post Comments:

Search

New Articles
For nanowires, nothing sparkles quite like diamond 2/19/2010

New fiber nanogenerators could lead to electric clothing 2/18/2010

New sensor exploits traditional weakness of nano devices 2/17/2010

Material scientists turn light into electrical current using a golden nanoscale system 2/16/2010

Single-step technique produces both p-type and n-type doping for future graphene devices 2/16/2010

Research may lead to new ways to transport and manipulate molecules 2/15/2010

Digging deep into diamonds, applied physicists advance quantum science and technology 2/15/2010

Silver nanoparticles may one day be key to devices that keep hearts beating strong and steady 2/12/2010

Researchers develop nanoscale structures with superior mechanical properties 2/11/2010

Big book explores a small world: Stuart Lindsay's guide to nanoscience 2/10/2010

Physicists kill cancer with 'nanobubbles' 2/9/2010

Nano imagining takes turn for the better 2/6/2010

Nano for the senses 2/5/2010

Magnetic nanoparticles show promise for combating human cancer 2/4/2010

Summit examines vast applications of nanomedicine 2/3/2010


Archives
February 2010
January 2010
December 2009
November 2009
October 2009
September 2009
August 2009
July 2009
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007


Science Friends
Agricultural Science
Astronomy News
Biology News

Cognitive Research
Chemistry News
Tissue Engineering
Cancer Research

Forensics Report
Fossil News
Genetic Archaeology

Geology News
Physics News


  Archives |  Advertise With Us |  Contact Us |  Links
Use of this site constitutes acceptance of our Terms of Service and Privacy Policy. All contents © 2000 - 2011 Web Doodle, LLC. All rights reserved.