Nanite News
Recent News |  Archives |  Tags |  About |  Newsletter |  Links | 


More Articles
A warmer future for watersportsA warmer future for watersports

Inbreeding may have caused Darwin family illsInbreeding may have caused Darwin family ills


Gene discovery may lead to new varieties of soybean plantsGene discovery may lead to new varieties of soybean plants


A lab rat - created in the labA lab rat - created in the lab



Marked for Life: Tattoo Matching Software to Identify SuspectsMarked for Life: Tattoo Matching Software to Identify Suspects


Venus is alive - geologically speakingVenus is alive - geologically speaking

Researchers shed light on ancient Assyrian tabletsResearchers shed light on ancient Assyrian tablets

Hawaiian submarine canyons are hotspots of biodiversity and biomass for seafloor animal communitiesHawaiian submarine canyons are hotspots of biodiversity and biomass for seafloor animal communities


Scientists locate apparent hydrothermal vents off AntarcticaScientists locate apparent hydrothermal vents off Antarctica

Juggling enhances connections in the brainJuggling enhances connections in the brain

Fill 'er up - with algaeFill 'er up - with algae

Scientists discover quantum fingerprints of chaosScientists discover quantum fingerprints of chaos

Nanotech yields major advance in heat transfer, cooling technologies (6/13/2010)

Tags:
coatings, materials
This nanoscale-level coating of zinc oxide on top of a copper plate holds the potential to dramatically increase heat transfer characteristics and lead to a revolution in heating and cooling technology, according to experts at Oregon State University and the Pacific Northwest National Laboratory. (Photo courtesy of Oregon State University)
This nanoscale-level coating of zinc oxide on top of a copper plate holds the potential to dramatically increase heat transfer characteristics and lead to a revolution in heating and cooling technology, according to experts at Oregon State University and the Pacific Northwest National Laboratory. (Photo courtesy of Oregon State University)

Researchers at Oregon State University and the Pacific Northwest National Laboratory have discovered a new way to apply nanostructure coatings to make heat transfer far more efficient, with important potential applications to high tech devices as well as the conventional heating and cooling industry.

These coatings can remove heat four times faster than the same materials before they are coated, using inexpensive materials and application procedures.

The discovery has the potential to revolutionize cooling technology, experts say.

The findings have just been announced in the International Journal of Heat and Mass Transfer, and a patent application has been filed.

"For the configurations we investigated, this approach achieves heat transfer approaching theoretical maximums," said Terry Hendricks, the project leader from the Pacific Northwest National Laboratory. "This is quite significant."

The improvement in heat transfer achieved by modifying surfaces at the nanoscale has possible applications in both micro- and macro-scale industrial systems, researchers said. The coatings produced a "heat transfer coefficient" 10 times higher than uncoated surfaces.

Heat exchange has been a significant issue in many mechanical devices since the Industrial Revolution.

The radiator and circulating water in an automobile engine exist to address this problem. Heat exchangers are what make modern air conditioners or refrigerators function, and inadequate cooling is a limiting factor for many advanced technology applications, ranging from laptop computers to advanced radar systems.

"Many electronic devices need to remove a lot of heat quickly, and that's always been difficult to do," said Chih-hung Chang, an associate professor in the School of Chemical, Biological and Environmental Engineering at Oregon State University. "This combination of a nanostructure on top of a microstructure has the potential for heat transfer that's much more efficient than anything we've had before."

There's enough inefficiency in heat transfer, for instance, that for water to reach its boiling point of 100 degrees centigrade, the temperature of adjacent plates often has to be about 140 degrees centigrade. But with this new approach, through both their temperature and a nanostructure that literally encourages bubble development, water will boil when similar plates are only about 120 degrees centigrade.

To do this, heat transfer surfaces are coated with a nanostructured application of zinc oxide, which in this usage develops a multi-textured surface that looks almost like flowers, and has extra shapes and capillary forces that encourage bubble formation and rapid, efficient replenishment of active boiling sites.

In these experiments, water was used, but other liquids with different or even better cooling characteristics could be used as well, the researchers said. The coating of zinc oxide on aluminum and copper substrates is inexpensive and could affordably be applied to large areas.

Because of that, this technology has the potential not only to address cooling problems in advanced electronics, the scientists said, but also could be used in more conventional heating, cooling and air conditioning applications. It could eventually find its way into everything from a short-pulse laser to a home air conditioner or more efficient heat pump systems. Military electronic applications that use large amounts of power are also likely, researchers said.

The research has been supported by the Army Research Laboratory. Further studies are being continued to develop broader commercial applications, researchers said.

"These results suggest the possibility of many types of selectively engineered, nanostructured patterns to enhance boiling behavior using low cost solution chemistries and processes," the scientists wrote in their study. "As solution processes, these microreactor-assisted, nanomaterial deposition approaches are less expensive than carbon nanotube approaches, and more importantly, processing temperatures are low."

Note: This story has been adapted from a news release issued by the Oregon State University

Post Comments:

Search

New Articles
'Nanocoax' solves solar cell 'thick and thin' dilemma'Nanocoax' solves solar cell 'thick and thin' dilemma

LVEM5 used by US Air Force Research Laboratory to Create Novel Bioassembled MaterialsLVEM5 used by US Air Force Research Laboratory to Create Novel Bioassembled Materials

Researchers capture first images of sub-nano pore structures

A new approach to finding and removing defects in grapheneA new approach to finding and removing defects in graphene

Testing predictions in electrochemical nanosystems

Faster computers with nanotechnologyFaster computers with nanotechnology

Nanosponge drug delivery system more effective than direct injectionNanosponge drug delivery system more effective than direct injection

Doping grapheneDoping graphene

Liquid method: pure graphene production

Copper nanowires enable bendable displays and solar cells

Scientists gain new 'core' understanding of nanoparticlesScientists gain new 'core' understanding of nanoparticles

Optical Legos: Building nanoshell structuresOptical Legos: Building nanoshell structures

Secrets of a chiral gold nanocluster unveiled

Powe Award supports development of nanocomposites to monitor wind turbine blade structure

Outstanding in their field effect



Archives
June 2010
May 2010
April 2010
March 2010
February 2010
January 2010
December 2009
November 2009
October 2009
September 2009
August 2009
July 2009
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007


Science Friends
Agricultural Science
Astronomy News
Biology News

Cognitive Research
Chemistry News
Tissue Engineering
Cancer Research


Forensics Report
Fossil News
Genetic Archaeology

Geology News


Physics News


  Archives |  Advertise With Us |  Contact Us |  Links
Use of this site constitutes acceptance of our Terms of Service and Privacy Policy. All contents © 2000 - 2011 Web Doodle, LLC. All rights reserved.