Nanite News
Recent News |  Archives |  Tags |  About |  Newsletter |  Links | 


More Articles
A warmer future for watersportsA warmer future for watersports

Inbreeding may have caused Darwin family illsInbreeding may have caused Darwin family ills


Gene discovery may lead to new varieties of soybean plantsGene discovery may lead to new varieties of soybean plants


A lab rat - created in the labA lab rat - created in the lab



Marked for Life: Tattoo Matching Software to Identify SuspectsMarked for Life: Tattoo Matching Software to Identify Suspects


Venus is alive - geologically speakingVenus is alive - geologically speaking

Researchers shed light on ancient Assyrian tabletsResearchers shed light on ancient Assyrian tablets

Hawaiian submarine canyons are hotspots of biodiversity and biomass for seafloor animal communitiesHawaiian submarine canyons are hotspots of biodiversity and biomass for seafloor animal communities


Scientists locate apparent hydrothermal vents off AntarcticaScientists locate apparent hydrothermal vents off Antarctica

Juggling enhances connections in the brainJuggling enhances connections in the brain

Fill 'er up - with algaeFill 'er up - with algae

Scientists discover quantum fingerprints of chaosScientists discover quantum fingerprints of chaos

Powe Award supports development of nanocomposites to monitor wind turbine blade structure (5/30/2010)

Tags:
nanotubes, materials, nanocomposites

Gary D. Seidel, assistant professor of aerospace engineering in the College of Engineering at Virginia Tech, has received a Ralph E. Powe Junior Faculty Enhancement Award to support development of a carbon nanotube-enhanced composite for structural health monitoring sensors to improve the resiliency of huge wind turbine blades.

Powe awards provide seed money for research at Oak Ridge Associated Universities (ORAU) member institutions. These awards are intended to enrich the research and professional growth of young faculty and result in new funding opportunities. Seidel's research also overlaps with several Oak Ridge National Laboratory (ORNL) initiatives, including addressing global warming through alternative energy, advancing active materials, and advancing multiscale characterization and modeling.

Wind turbine blades enjoy a steady wind but can be damaged by gust-induced vibrations. Seidel proposes to create tiny sensor patches that can be selectively placed in key locations where it is anticipated that damage will start. The patches are made of the same base material as the blade but sprinkled with carbon nanotubes, resulting in a nanocomposite sensor which adds negligible weight to the structure.

The submicroscopic carbon nanotubes can be highly conductive, like invisible, extremely lightweight, electrical wires. Placing the highly conducting carbon nanotubes inside a polymer material makes the resulting nanocomposite patch's conductivity sensitive to deformation. As the material is deformed by a stress on the blade, the nanotubes shift, move closer together, and their conductivity jumps - one mechanism behind the phenomenon known as a "piezoresistive response." The change in the nanocomposite conductivity sends a signal to the wind turbine control center, allowing the operator to then know which blade is stressed and should be turned off to prevent further damage to that turbine.

Seidel's focus is on assessing the sensing capabilities of the nanocomposite and building multiscale models for use in structural health monitoring software algorithms. His preliminary models have demonstrated that he can create nanocomposites that respond to stresses with conductivity changes. He will begin actual sensor development this summer.

"Based on what we have learned about the mechanism behind the piezoresistive response of our nanocomposites, we will create the necessary tools for nanocomposite sensor development and tailoring for the wind turbine blade application," Seidel said. "And we will also know a great deal more about the mechanism and potential of nanocomposites for structural health monitoring."

He said that the Nanoscale Characterization and Fabrication Laboratory, part of Virginia Tech's Institute for Critical Technology and Applied Science, and the College of Engineering's Aerospace Structures and Materials Laboratory, make it possible for him to conduct the basic multiscale characterization research, to construct a 3-D image of the nanotubes network within the matrix, and to identify key features such as network morphology, nanotube orientation, and nanotube waviness, needed to develop accurate multiscale models of nanocomposite piezoresistive response.

Seidel joined Virginia Tech in August of 2008. He has been working in the area of multiscale modeling of the mechanical and non-mechanical properties of polymer nanocomposites for the past six years through projects sponsored by the National Science Foundation, Sandia National Laboratories, NASA, and the Air Force Office of Scientific Research. His research focus is on developing integrated computational mechanics models to predict material properties and structural response of nanocomposites across length scales ranging from a few nanometers, through the micron scale, and up to the structural scale. He received Ph.D.in aerospace engineering from Texas A&M University in 2007.

Note: This story has been adapted from a news release issued by the Virginia Tech

Post Comments:

Search

New Articles
Powe Award supports development of nanocomposites to monitor wind turbine blade structure

Outstanding in their field effect

Graphane yields new potentialGraphane yields new potential

Inspired by a cotton candy machine, engineers put a new spin on creating tiny nanofibersInspired by a cotton candy machine, engineers put a new spin on creating tiny nanofibers

Collaboration mimics library of bio-membranes for use in nanomedicine, drug deliveryCollaboration mimics library of bio-membranes for use in nanomedicine, drug delivery

Antibacterial silver nanoparticles are a blast

Nanotech breath sensor detects diabetes and potentially serious complicationNanotech breath sensor detects diabetes and potentially serious complication

Scientists reveal secret of nanoparticle crystallization in real timeScientists reveal secret of nanoparticle crystallization in real time

Spiders at the nanoscale: Molecules that behave like robotsSpiders at the nanoscale: Molecules that behave like robots

Survey: Hiding risks can hurt public support for nanotechnology

Nano parfait a treat for scientistsNano parfait a treat for scientists

Gold nanoparticles enrich everyday productsGold nanoparticles enrich everyday products

Nano-infused filters prove effectiveNano-infused filters prove effective

Lollipops and ice fishing: Molecular rulers used to probe nanoporesLollipops and ice fishing: Molecular rulers used to probe nanopores

Seeing moire in grapheneSeeing moire in graphene



Archives
May 2010
April 2010
March 2010
February 2010
January 2010
December 2009
November 2009
October 2009
September 2009
August 2009
July 2009
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007


Science Friends
Agricultural Science
Astronomy News
Biology News

Cognitive Research
Chemistry News
Tissue Engineering
Cancer Research


Forensics Report
Fossil News
Genetic Archaeology

Geology News


Physics News


  Archives |  Advertise With Us |  Contact Us |  Links
Use of this site constitutes acceptance of our Terms of Service and Privacy Policy. All contents © 2000 - 2011 Web Doodle, LLC. All rights reserved.