Nanite News
Recent News |  Archives |  Tags |  About |  Newsletter |  Links | 


More Articles
A warmer future for watersportsA warmer future for watersports

Inbreeding may have caused Darwin family illsInbreeding may have caused Darwin family ills


Gene discovery may lead to new varieties of soybean plantsGene discovery may lead to new varieties of soybean plants


A lab rat - created in the labA lab rat - created in the lab



Marked for Life: Tattoo Matching Software to Identify SuspectsMarked for Life: Tattoo Matching Software to Identify Suspects


Venus is alive - geologically speakingVenus is alive - geologically speaking

Researchers shed light on ancient Assyrian tabletsResearchers shed light on ancient Assyrian tablets

Hawaiian submarine canyons are hotspots of biodiversity and biomass for seafloor animal communitiesHawaiian submarine canyons are hotspots of biodiversity and biomass for seafloor animal communities


Scientists locate apparent hydrothermal vents off AntarcticaScientists locate apparent hydrothermal vents off Antarctica

Juggling enhances connections in the brainJuggling enhances connections in the brain

Fill 'er up - with algaeFill 'er up - with algae

Scientists discover quantum fingerprints of chaosScientists discover quantum fingerprints of chaos

Scientists gain new 'core' understanding of nanoparticles (6/2/2010)

Tags:
nanoparticles
Schematic of a spherical magnetite nanoparticle shows the unexpected variation in magnetic moment between the particle's interior and exterior when subjected to a strong magnetic field. The core's moment (black lines in magenta region) lines up with the field's (light blue arrow), while the exterior's moment (black arrows in green region) forms at right angles to it. - NIST
Schematic of a spherical magnetite nanoparticle shows the unexpected variation in magnetic moment between the particle's interior and exterior when subjected to a strong magnetic field. The core's moment (black lines in magenta region) lines up with the field's (light blue arrow), while the exterior's moment (black arrows in green region) forms at right angles to it. - NIST

While attempting to solve one mystery about iron oxide-based nanoparticles, a research team working at the National Institute of Standards and Technology (NIST) stumbled upon another one. But once its implications are understood, their discovery* may give nanotechnologists a new and useful tool.

The nanoparticles in question are spheres of magnetite so tiny that a few thousand of them lined up would stretch a hair's width, and they have potential uses both as the basis of better data storage systems and in biological applications such as hyperthermia treatment for cancer. A key to all these applications is a full understanding of how large numbers of the particles interact magnetically with one another across relatively large distances so that scientists can manipulate them with magnetism.

"It's been known for a long time that a big chunk of magnetite has greater magnetic 'moment'-think of it as magnetic strength-than an equivalent mass of nanoparticles," says Kathryn Krycka, a researcher at the NIST Center for Neutron Research. "No one really knows why, though. We decided to probe the particles with beams of low-energy neutrons, which can tell you a great deal about a material's internal structure."

The team applied a magnetic field to nanocrystals composed of 9 nm-wide particles, made by collaborators at Carnegie Mellon University. The field caused the particles to line up like iron filings on a piece of paper held above a bar magnet. But when the team looked closer using the neutron beam, what they saw revealed a level of complexity never seen before.

"When the field is applied, the inner 7 nm-wide 'core' orients itself along the field's north and south poles, just like large iron filings would," Krycka says. "But the outer 1 nm 'shell' of each nanoparticle behaves differently. It also develops a moment, but pointed at right angles to that of the core."

In a word, bizarre. But potentially useful.

The shells are not physically different than the interiors; without the magnetic field, the distinction vanishes. But once formed, the shells of nearby particles seem to heed one another: A local group of them will have their shells' moments all lined up one way, but then another group's shells will point elsewhere. This finding leads Krycka and her team to believe that there is more to be learned about the role that particle interaction has on determining internal, magnetic nanoparticle structure-perhaps something nanotechnologists can harness.

"The effect fundamentally changes how the particles would talk to each other in a data storage setting," Krycka says. "If we can control it-by varying their temperature, for example, as our findings suggest we can-we might be able to turn the effect on and off, which could be useful in real-world applications."

Note: This story has been adapted from a news release issued by the National Institute of Standards and Technology (NIST)

Post Comments:

Search

New Articles
Secrets of a chiral gold nanocluster unveiled

Powe Award supports development of nanocomposites to monitor wind turbine blade structure

Outstanding in their field effect

Graphane yields new potentialGraphane yields new potential

Inspired by a cotton candy machine, engineers put a new spin on creating tiny nanofibersInspired by a cotton candy machine, engineers put a new spin on creating tiny nanofibers

Collaboration mimics library of bio-membranes for use in nanomedicine, drug deliveryCollaboration mimics library of bio-membranes for use in nanomedicine, drug delivery

Antibacterial silver nanoparticles are a blast

Nanotech breath sensor detects diabetes and potentially serious complicationNanotech breath sensor detects diabetes and potentially serious complication

Scientists reveal secret of nanoparticle crystallization in real timeScientists reveal secret of nanoparticle crystallization in real time

Spiders at the nanoscale: Molecules that behave like robotsSpiders at the nanoscale: Molecules that behave like robots

Survey: Hiding risks can hurt public support for nanotechnology

Nano parfait a treat for scientistsNano parfait a treat for scientists

Gold nanoparticles enrich everyday productsGold nanoparticles enrich everyday products

Nano-infused filters prove effectiveNano-infused filters prove effective

Lollipops and ice fishing: Molecular rulers used to probe nanoporesLollipops and ice fishing: Molecular rulers used to probe nanopores



Archives
May 2010
April 2010
March 2010
February 2010
January 2010
December 2009
November 2009
October 2009
September 2009
August 2009
July 2009
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007


Science Friends
Agricultural Science
Astronomy News
Biology News

Cognitive Research
Chemistry News
Tissue Engineering
Cancer Research


Forensics Report
Fossil News
Genetic Archaeology

Geology News


Physics News


  Archives |  Advertise With Us |  Contact Us |  Links
Use of this site constitutes acceptance of our Terms of Service and Privacy Policy. All contents © 2000 - 2011 Web Doodle, LLC. All rights reserved.