Nanite News
Recent News |  Archives |  Tags |  About |  Newsletter |  Links | 
New Articles
Implant bacteria, beware: Researchers create nano-sized assassins 6/28/2009

Making nanoparticles in artificial cells 6/27/2009

Southwest Nano Consortium established 6/26/2009

Research explores interactions between nanomaterials, biological systems 6/24/2009

Scientists invent the world's only controllable molecule gear of minuscule size of 1.2 nm 6/24/2009

Researchers achieve breakthrough in effort to develop tiny biological fuel cells 6/23/2009

Nonstick and laser-safe gold aids laser trapping of biomolecules 6/20/2009

Shape matters in the case of cobalt nanoparticles 6/19/2009

Nanocrystals reveal activity within cells 6/18/2009

Researcher's nanoparticles could someday lead to end of chemotherapy 6/17/2009

Scientists advance safety of nanotechnology 6/14/2009

Materials scientist finds plumber's wonderland on graphene 6/13/2009

Tunable semiconductors possible with hot new material called graphene 6/12/2009

Researchers create freestanding nanoparticle films without fillers 6/11/2009

Graphene may have advantages over copper for IC interconnects at the nanoscale 6/8/2009

Implant bacteria, beware: Researchers create nano-sized assassins (6/28/2009)

Tags:
medicine, nanoparticles
Erik Taylor is a graduate student in engineering at Brown University. - Brown University
Erik Taylor is a graduate student in engineering at Brown University. - Brown University

Staphylococcus epidermidis is quite an opportunist. Commonly found on human skin, the bacteria pose little danger. But S. epidermidis is a leading cause of infections in hospitals. From catheters to prosthetics, the bacteria are known to hitch a ride on a range of medical devices implanted into patients.

Inside the body, the bacteria multiply on the implant's surface and then build a slimy, protective film to shield the colony from antibiotics. According to a study in the journal Clinical Infectious Diseases, up to 2.5 percent of hip and knee implants alone in the United States become infected, affecting thousands of patients, sometimes fatally.

More ominously, there is no effective antidote for infected implants. The only way to get rid of the bacteria is to remove the implant. "There is no [easy] solution," said Thomas Webster, a biomedical engineer at Brown University.

Now, Webster and Brown graduate student Erik Taylor have created a nano-sized headhunter that zeroes in on the implant, penetrates S. epidermidis's defensive wall and kills the bacteria. The finding, published in the International Journal of Nanomedicine, is the first time iron-oxide nanoparticles have been shown to eliminate a bacterial infection on an implanted prosthetic device.

In lab tests, Taylor, the lead author, and Webster, associate professor of engineering and orthopaedics, noted that up to 28 percent of the bacteria on an implant had been eliminated after 48 hours by injecting 10 micrograms of the nanoparticle agents. The same dosage repeated three times over six days destroyed essentially all the bacteria, the experiments showed.

The tests show "there will be a continual killing of the bacteria until the film is gone," said Webster, who is editor-in-chief of the peer-reviewed journal in which the paper appears.

A surprising added benefit, the scientists learned, is the nanoparticles' magnetic properties appear to promote natural bone cell growth on the implant's surface, although this observation needs to be tested further.

To carry out the study, the researchers created iron-oxide particles (they call them "superparamagnetic") with an average diameter of eight nanometers. They chose iron oxide because the metallic properties mean the particles can be guided by a magnetic field to the implant, while its journey can be tracked using a simple magnetic technique, such as magnetic resonance imaging (MRI). Moreover, previous experiments showed that iron seemed to cause S. epidermidis to die, although researchers are unsure why. (Webster said it may be due to iron overload in the bacteria's cell.)

Once the nanoparticles arrive at the implant, they begin to penetrate the bacterial shield. The researchers are studying why this happens, but they believe it's due to magnetic horsepower. In the tests, the researchers positioned a magnet below the implant, producing a strong enough field to force the nanoparticles above to filter through the film and proceed to the implant, Webster explained.

The particles then penetrate the bacterial cells because of their super-small size. A micron-sized particle, a thousand times larger than a nanoparticle, would be too large to penetrate the bacterial cell wall.

Note: This story has been adapted from a news release issued by the Brown University

Post Comments:

Search



Archives
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007


Science Friends
Agricultural Science
Astronomy News
Biology News

Cognitive Research
Chemistry News
Tissue Engineering
Cancer Research
Cybernetics Research
Fossil News
Genetic Archaeology

Geology News
Physics News
  Archives |  Advertise With Us |  Contact Us |  Links
All contents © 2000 - 2010 Web Doodle, LLC. All rights reserved.