Nanite News
Recent News |  Archives |  Tags |  About |  Newsletter |  Links | 
New Articles
Nonstick and laser-safe gold aids laser trapping of biomolecules 6/20/2009

Shape matters in the case of cobalt nanoparticles 6/19/2009

Nanocrystals reveal activity within cells 6/18/2009

Researcher's nanoparticles could someday lead to end of chemotherapy 6/17/2009

Scientists advance safety of nanotechnology 6/14/2009

Materials scientist finds plumber's wonderland on graphene 6/13/2009

Tunable semiconductors possible with hot new material called graphene 6/12/2009

Researchers create freestanding nanoparticle films without fillers 6/11/2009

Graphene may have advantages over copper for IC interconnects at the nanoscale 6/8/2009

Scientists create nanoscale zipper cavity that responds to single photons of light 6/7/2009

New, light-driven nanomotor is simpler, more promising, scientists say 6/6/2009

A breakthrough toward industrial production of fluorescent nanodiamonds 6/5/2009

Biomimetic-engineering design can replace spaghetti tangle of nanotubes in novel material 6/2/2009

First 'nanorust' field test slated in Mexico 5/30/2009

New rotors could help develop nanoscale generators 5/29/2009

Nonstick and laser-safe gold aids laser trapping of biomolecules (6/20/2009)

Tags:
materials, gold, medicine, nanoposts
The gold posts in this colorized micrograph, averaging 450 nanometers in diameter, are used to anchor individual biomolecules such as DNA for studies of their mechanical properties. The background surface is glass coated with a protein to prevent unwanted sticking. - D.H. Paik/JILA
The gold posts in this colorized micrograph, averaging 450 nanometers in diameter, are used to anchor individual biomolecules such as DNA for studies of their mechanical properties. The background surface is glass coated with a protein to prevent unwanted sticking. - D.H. Paik/JILA

Biophysicists long for an ideal material-something more structured and less sticky than a standard glass surface-to anchor and position individual biomolecules. Gold is an alluring possibility, with its simple chemistry and the ease with which it can be patterned. Unfortunately, gold also tends to be sticky and can be melted by lasers. Now, biophysicists at JILA have made gold more precious than ever-at least as a research tool-by creating nonstick gold surfaces and laser-safe gold nanoposts, a potential boon to laser trapping of biomolecules.

JILA is a joint institute of the National Institute of Standards and Technology (NIST) and the University of Colorado at Boulder.

JILA's successful use of gold in optical-trapping experiments, reported in Nano Letters,* could lead to a 10-fold increase in numbers of single molecules studied in certain assays, from roughly five to 50 per day, according to group leader Tom Perkins of NIST. The ability to carry out more experiments with greater precision will lead to new insights, such as uncovering diversity in seemingly identical molecules, and enhance NIST's ability to carry out mission work, such as reproducing and verifying piconewton-scale force measurements using DNA, Perkins says. (A one-kilogram mass on the Earth's surface exerts a force of roughly 10 newtons. A piconewton is newtons. See "JILA Finds Flaw in Model Describing DNA Elasticity" NIST Tech Beat, Sept. 13, 2007.)

Perkins and other biophysicists use laser beams to precisely manipulate, track and measure molecules like DNA, which typically have one end bonded to a surface and the other end attached to a micron-sized bead that acts as a "handle" for the laser. Until now, creating the platform for such experiments has generally involved nonspecifically absorbing fragile molecules onto a sticky glass surface, producing random spacing and sometimes destroying biological activity. "It's like dropping a car onto a road from 100 feet up and hoping it will land tires down. If the molecule lands in the wrong orientation, it won't be active or, worse, it will only partially work," Perkins says.

Ideally, scientists want to attach biomolecules in an optimal pattern on an otherwise nonstick surface. Gold posts are easy to lay down in desired patterns at the nanometer scale. Perkins' group attached the DNA to the gold with sulfur-based chemical units called thiols (widely used in nanotechnology), an approach that is mechanically stronger than the protein-based bonding techniques typically used in biology. The JILA scientists used six thiol bonds instead of just one between the DNA and the gold posts. These bonds were mechanically strong enough to withstand high-force laser trapping and chemically robust enough to allow the JILA team to coat the unreacted gold on each nanopost with a polymer cushion, which eliminated undesired sticking. "Now you can anchor DNA to gold and keep the rest of the gold very nonstick," Perkins says.

Moreover, the gold nanoposts were small enough-with diameters of 100 to 500 nanometers and a height of 20 nanometers-that the scientists could avoid hitting the posts directly with lasers. "Like oil and water, traditionally laser tweezers and gold don't mix. By making very small islands of gold, we positioned individual molecules where we wanted them, and with a mechanical strength that enables more precise and additional types of studies," Perkins says.

Note: This story has been adapted from a news release issued by the National Institute of Standards and Technology (NIST)

Post Comments:

Search



Archives
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007


Science Friends
Agricultural Science
Astronomy News
Biology News

Cognitive Research
Chemistry News
Tissue Engineering
Cancer Research
Cybernetics Research
Fossil News
Genetic Archaeology

Geology News
Physics News
  Archives |  Advertise With Us |  Contact Us |  Links
All contents © 2000 - 2010 Web Doodle, LLC. All rights reserved.