Nanite News
Recent News |  Archives |  Tags |  About |  Newsletter |  Links | 


More Articles
Scientists discover 'catastrophic event' behind the halt of star birth in early galaxy formationScientists discover 'catastrophic event' behind the halt of star birth in early galaxy formation


Fish can recognize a face based on UV pattern aloneFish can recognize a face based on UV pattern alone

Ancient DNA from rare fossil reveals that polar bears evolved recently and adapted quicklyAncient DNA from rare fossil reveals that polar bears evolved recently and adapted quickly

'Anaconda' meets 'Jurassic Park': Study shows ancient snakes ate dinosaur babies'Anaconda' meets 'Jurassic Park': Study shows ancient snakes ate dinosaur babies

Scientists locate apparent hydrothermal vents off AntarcticaScientists locate apparent hydrothermal vents off Antarctica

Predicting the fate of stem cellsPredicting the fate of stem cells



Juggling enhances connections in the brainJuggling enhances connections in the brain

Tracking down the human 'odorprint'Tracking down the human 'odorprint'

Fill 'er up - with algaeFill 'er up - with algae

Scientists discover quantum fingerprints of chaosScientists discover quantum fingerprints of chaos

Researchers help identify cows that gain more while eating lessResearchers help identify cows that gain more while eating less

Silver proves its mettle for nanotech applications (3/22/2010)

Tags:
silver, nanoparticles, self assembly, scaffolds
A long single-strand of DNA has been folded into a triangular building platform through a process known as DNA origami. This architectural foundation was then 'decorated' with one, two or three silver nanoparticles, which self-assembled at pre-determined locations on the DNA nanostructure. - Hao Yan, Yan Liu, Biodesign Institute at Arizona State University
A long single-strand of DNA has been folded into a triangular building platform through a process known as DNA origami. This architectural foundation was then 'decorated' with one, two or three silver nanoparticles, which self-assembled at pre-determined locations on the DNA nanostructure. - Hao Yan, Yan Liu, Biodesign Institute at Arizona State University

The self-assembling properties of the DNA molecule have allowed for the construction of an intriguing range of nanoscale forms. Such nanoarchitectures may eventually find their way into a new generation of microelectronics, semiconductors, biological and chemical sensing devices and a host of biomedical applications. Now Hao Yan and Yan Liu, professors at the Biodesign Institute's Center for Single Molecule Biophysics and their collaborators have introduced a new method to deterministically and precisely position silver nanoparticles onto self-assembling DNA scaffolds.

In their latest research, the group used a long single-strand of DNA, which had been folded into a triangular building platform through a process known as DNA origami. This architectural foundation was then 'decorated' with one, two or three silver nanoparticles, which self-assembled at pre-determined locations on the DNA nanostructure. The group's experimental results, which appear in the advanced online edition of the journal Angewandte Chemie, demonstrate for the first time the viability of using silver, rather than the gold nanoparticles traditionally applied to DNA-tile or origami based architectures. The study was co-authored by Suchetan Pal, Zhengtao Deng, Baoquan Ding.

One of many applications for DNA scaffolds studded with nanoparticles is to perform precise sensing operations at the molecular scale. Sensitive detection of single molecules with high specificity is of great scientific interest for chemists, biologists, pharmacologists, medical researchers and those involved in environmental areas where trace analysis is required. The detailed study of human genes is but one area where improved single-molecule detection could be of enormous benefit.

In their current effort, the group sought to exploit the properties of the silver nanoparticles to increase the surface plasmon resonance-a vibration of electrons that can give researchers clues regarding the molecular nature of the sample they are studying. "Theoretically, people predicted that a local surface plasmon resonance can be much stronger if you use silver particles compared to gold," said Yan. These locally enhanced areas between nanoparticles are referred to as electrical hot spots.

The group however, had to overcome significant obstacles to the use of silver nanoparticles. Silver tends to be much less stable than gold and can easily oxidize in its normal state. To counter this tendency, Yan and Liu's team attached multiple sulfur atoms to the backbone of the DNA strand used to make the platform for the nanoparticles. Each silver nanoparticle is then firmly held in place by nine sulfur atoms, once it is mounted on the DNA origami shape.

The new study paves the way for creating a more functional DNA architecture. "I believe this work will open doors to implement and study distance-dependent plasmonic interaction between noble nanoparticles at the single particle level," Yan said, adding that the first critical steps to creating hierarchically organized silver nanoparticle structures have now been taken.

Note: This story has been adapted from a news release issued by the Arizona State University

Post Comments:

Search

New Articles
Silver proves its mettle for nanotech applicationsSilver proves its mettle for nanotech applications

Engineers: Weak laser can ignite nanoparticles, with exciting possibilities

Nano-based RFID tags could replace bar codesNano-based RFID tags could replace bar codes

Layered graphene sheets could solve hydrogen storage issuesLayered graphene sheets could solve hydrogen storage issues

Light twists rigid structures in unexpected nanotech findingLight twists rigid structures in unexpected nanotech finding

Lithium-ion anode uses self-assembled nanocomposite materials to increase capacityLithium-ion anode uses self-assembled nanocomposite materials to increase capacity

Look at Mie!Look at Mie!

Designer nano luggage to carry drugs to diseased cells

Researchers discover new way of producing electricityResearchers discover new way of producing electricity

Trapping sunlight with silicon nanowiresTrapping sunlight with silicon nanowires

Popular nanoparticle causes toxicity in fish, study shows

Atmospheric nanoparticles impact health, weather professor says

Researchers make graphene hybrid

A number of European companies working together to create innovative facades with nanomaterials

New graphene 'nanomesh' could change the future of electronics



Archives
March 2010
February 2010
January 2010
December 2009
November 2009
October 2009
September 2009
August 2009
July 2009
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007


Science Friends
Agricultural Science
Astronomy News
Biology News

Cognitive Research
Chemistry News
Tissue Engineering
Cancer Research

Forensics Report
Fossil News
Genetic Archaeology

Geology News
Physics News


  Archives |  Advertise With Us |  Contact Us |  Links
Use of this site constitutes acceptance of our Terms of Service and Privacy Policy. All contents © 2000 - 2011 Web Doodle, LLC. All rights reserved.