Nanite News
Recent News |  Archives |  Tags |  About |  Newsletter |  Links | 
New Articles
Nanocups brim with potential 3/17/2009

Quantum dots and nanomaterials: Ingredients for better lighting and more reliable power 3/16/2009

Revealing new applications for carbon nanomaterials in hydrogen storage 3/15/2009

Physicist develops battery using new source of energy 3/14/2009

Nanowires may lead to better fuel cells 3/13/2009

Nanotubes find niche in electric switches 3/13/2009

Spinning carbon nanotubes spawns new wireless applications 3/12/2009

It's raining pentagons 3/11/2009

New nanoporous material has highest surface area yet 3/11/2009

Buckyballs could keep water systems flowing 3/10/2009

Sunlight turns carbon dioxide to methane 3/9/2009

Magnetic nanoparticles navigate therapeutic genes through the body 3/8/2009

Chemists find secret to increasing luminescence efficiency of carbon nanotubes 3/7/2009

Researchers discover a potential on-off switch for nanoelectronics 3/6/2009

'Nanostitching' could strengthen airplane skins, more 3/5/2009

Revealing new applications for carbon nanomaterials in hydrogen storage (3/15/2009)

Tags:
materials

An international research team, involving Professor Rajeev Ahuja at Uppsala University and researchers in the USA, set out to understand the mechanism behind the catalytic effects of carbon nanomaterials. Experimental and theoretical efforts were combined in a synergistic approach and the results, published this week in the ASAP section of the journal Nano Letters, will fasten efforts to develop new catalysts.

Our energy-hungry world has become increasingly dependent on new methods to store and convert energy for new, environmentally friendly modes of transportation and electrical energy generation as well as for portable electronics. Mobility - the transport of people and goods - is a socioeconomic reality that will surely increase in the coming years. Hydrogen, which can be produced with little or no harmful emissions, has been projected as a long term solution for a secure energy future. Research into safe and efficient means of hydrogen production, storage, and use is essential to make the "hydrogen economy" a reality.

Car manufactures are showing interest in using solid state hydrogen storage materials, e.g. NaAlH4, as new energy storage media. The functional properties of these materials however have to be improved by catalysts. The effect of earlier catalysts, e.g. Ti, has been difficult to explain. The current results give an unambiguous understanding of the mechanism at work in the new carbon nanomaterial catalysts.

The researchers set out to understand the mechanism behind the catalytic effects of carbon nanomaterials, specifically on the example of sodium alanate, which is a popular material for hydrogen storage studies.

"Now that the catalytic capabilities of carbon nanomaterials have been demonstrated so clearly and the mechanism that makes this behaviour possible has been understood, we expect a strong impulse on putting this effect to use in practical applications.", says Professor Rajeev Ahuja.

"Certainly, our findings have the strongest impact in the field of hydrogen storage, but beyond that, the same mechanism that we revealed can make carbon nanomaterials a very important catalyst in many other systems as well."

The extensive simulations were performed at Uppsala University's Multidisciplinary Center for Advanced Computational Science (UPPMAX).

Note: This story has been adapted from a news release issued by the Uppsala University

- Debt Help - Arizona Landscaping - Credit Consolidation

Post Comments:

Search



Archives
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007


Science Friends
Astronomy News

Cognitive Research
Chemistry News
Tissue Engineering
Cancer Research
Geology News
Physics News
  Archives |  Advertise With Us |  Contact Us |  Links
All contents © 2000 - 2010 Web Doodle, LLC. All rights reserved.