Nanite News
Recent News |  Archives |  Tags |  About |  Newsletter |  Links | 


More Articles
A warmer future for watersportsA warmer future for watersports

Inbreeding may have caused Darwin family illsInbreeding may have caused Darwin family ills


Gene discovery may lead to new varieties of soybean plantsGene discovery may lead to new varieties of soybean plants


A lab rat - created in the labA lab rat - created in the lab



Marked for Life: Tattoo Matching Software to Identify SuspectsMarked for Life: Tattoo Matching Software to Identify Suspects


Venus is alive - geologically speakingVenus is alive - geologically speaking

Researchers shed light on ancient Assyrian tabletsResearchers shed light on ancient Assyrian tablets

Hawaiian submarine canyons are hotspots of biodiversity and biomass for seafloor animal communitiesHawaiian submarine canyons are hotspots of biodiversity and biomass for seafloor animal communities


Scientists locate apparent hydrothermal vents off AntarcticaScientists locate apparent hydrothermal vents off Antarctica

Juggling enhances connections in the brainJuggling enhances connections in the brain

Fill 'er up - with algaeFill 'er up - with algae

Scientists discover quantum fingerprints of chaosScientists discover quantum fingerprints of chaos

Timely technology sees tiny transitions (6/28/2010)

Tags:
fluorescence, tagging, bipyramids
Gold bipyramids photographed by a scanning electron microscope. (Credit Hafner Lab/Rice University)
Gold bipyramids photographed by a scanning electron microscope. (Credit Hafner Lab/Rice University)

Scientists can detect the movements of single molecules by using fluorescent tags or by pulling them in delicate force measurements, but only for a few minutes. A new technique by Rice University researchers will allow them to track single molecules without modifying them -- and it works over longer timescales.

In the current issue of Nanotechnology, a team led by Jason Hafner, an associate professor of physics and astronomy and of chemistry, has shown that the plasmonic properties of nanoparticles can "light up" molecular interactions at the single-molecule limit in ways that will be useful to scientists.

Hafner's method takes advantage of the ability of metal nanoparticles to focus light down to biomolecular scales through an effect called localized surface plasmon resonance (LSPR). The gold nanoparticles ultimately used in the experiment scatter light in visible wavelengths, which can be detected and spectrally analyzed in a microscope.

"The exact peak wavelength of the resonance is highly sensitive to small perturbations in the nearby dielectric environment," said graduate student Kathryn Mayer, the lead student on the experiment. "By tracking the peak with a spectrometer, we can detect molecular interactions near the surface of the nanoparticles."

Hafner first discussed their progress at a 2006 conference after a presentation on gold nanostars his lab had developed. "We had extremely preliminary data, and I said, 'Maybe we've got it.' I thought we were close," he recalled.

What took time was finding the right particle. "We started with nanorods, which don't scatter light well, at least not the small nanorods we produce in my lab. Then we tried nanostars and found they were very bright and sensitive, but each was a different shape and had a different peak wavelength."

The team settled on bipyramids, 140-nanometer-long, 10-sided gold particles that focus light at their sharp tips, creating a halo-like "sensing volume," the dielectric environment in which changes can be read by a spectrometer.

Hafner and his colleagues borrowed bioconjugate chemistry techniques, coating the bipyramids with antibodies and then adding antigens that strongly bind to them. Then the antigens were rinsed off. Whenever one was released from its bond to the bipyramid antibody, the researchers detected a slight shift toward the blue in the red light naturally scattered by gold bipyramids.

The process is "label-free," meaning the molecule itself is being detected, rather than a fluorescent tag that requires modification of the molecule, Hafner said. Also, the dielectric property being detected is permanent, so molecules could be tracked for more than 10 hours, as compared with only minutes with current methods.

"The ability to measure over long time scales opens the possibility to study systems with strong affinity at the single-molecule limit, such as lectin-carbohydrate interactions responsible for cell recognition and adhesion," Hafner said. "Other single-molecule methods based on fluorescence are limited by photo bleaching, and those based on force measurements are limited by radiation damage and mechanical instabilities."

Work needs to be done before LSPR becomes an ideal biological sensor, he said. The team plans to tweak the bipyramids and will test other particles.

"With this bipyramid, we went a little too red," he said. "It's a compromise. Make them long and they're really sensitive, but so red that we don't get much signal. Make them shorter, they're somewhat less sensitive but you have more signal.

"If we can get the signal-to-noise ratio up by a factor of two or three, we think it will be a powerful method for biological research."

Note: This story has been adapted from a news release issued by the Rice University

Post Comments:

Search

New Articles
Nanowires for the electronics and optoelectronics of the futureNanowires for the electronics and optoelectronics of the future

Researchers develop new method for mass-producing grapheneResearchers develop new method for mass-producing graphene

Researchers create self-assembling nanodevices that move and change shape on demand

Researchers develop ultra-simple method for creating nanoscale gold coatingsResearchers develop ultra-simple method for creating nanoscale gold coatings

Peering into the never-before-seen

Using carbon nanotubes in lithium batteries can dramatically improve energy capacityUsing carbon nanotubes in lithium batteries can dramatically improve energy capacity

Nanoparticle scientist speaks on new discoveries at Goldschmidt Conference

Researchers discover new properties of World's thinnest material

Gold nanoparticles create visible-light catalysis in nanowires

Scientists create nano-patterned superconducting thin filmsScientists create nano-patterned superconducting thin films

Scientists strive to replace silicon with graphene on nanocircuitryScientists strive to replace silicon with graphene on nanocircuitry

'Instant acid' method offers new insight into nanoparticle dispersal in the environment and the body'Instant acid' method offers new insight into nanoparticle dispersal in the environment and the body

Applied physicists create building blocks for a new class of optical circuitsApplied physicists create building blocks for a new class of optical circuits

Nanotech yields major advance in heat transfer, cooling technologiesNanotech yields major advance in heat transfer, cooling technologies

'Nanocoax' solves solar cell 'thick and thin' dilemma'Nanocoax' solves solar cell 'thick and thin' dilemma



Archives
June 2010
May 2010
April 2010
March 2010
February 2010
January 2010
December 2009
November 2009
October 2009
September 2009
August 2009
July 2009
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007


Science Friends
Agricultural Science
Astronomy News
Biology News

Cognitive Research
Chemistry News
Tissue Engineering
Cancer Research


Forensics Report
Fossil News
Genetic Archaeology

Geology News


Physics News


  Archives |  Advertise With Us |  Contact Us |  Links
Use of this site constitutes acceptance of our Terms of Service and Privacy Policy. All contents © 2000 - 2011 Web Doodle, LLC. All rights reserved.