Nanite News
Recent News |  Archives |  Tags |  About |  Newsletter |  Links | 


More Articles

Now that's what I call a ratNow that's what I call a rat

For pandas, there is a mountain high enough, there is a valley low enoughFor pandas, there is a mountain high enough, there is a valley low enough

Super glaciers leave their mark on the Gondwanan supercontinentSuper glaciers leave their mark on the Gondwanan supercontinent

Potentially hazardous asteroid might collide with the Earth in 2182Potentially hazardous asteroid might collide with the Earth in 2182

Once bitten, twice shy -- a temperature switch triggers aversive memoryOnce bitten, twice shy -- a temperature switch triggers aversive memory


Chemists grow crystals with a twist - and untwistChemists grow crystals with a twist - and untwist

What plant genes tell us about crop domesticationWhat plant genes tell us about crop domestication

A warmer future for watersportsA warmer future for watersports

Gene discovery may lead to new varieties of soybean plantsGene discovery may lead to new varieties of soybean plants


A lab rat - created in the labA lab rat - created in the lab


Marked for Life: Tattoo Matching Software to Identify SuspectsMarked for Life: Tattoo Matching Software to Identify Suspects



Scientists discover quantum fingerprints of chaosScientists discover quantum fingerprints of chaos

Shocking results from diamond anvil cell experiments (7/9/2010)

Tags:
nanoshocks
he diamond anvil cell is small enough to fit in the palm of one’s hand, but it can compress a sample to extreme pressures ­ up to about 3.6 million atmospheres at room temperature and 1.7 million atmospheres at 3,000°C.
he diamond anvil cell is small enough to fit in the palm of one’s hand, but it can compress a sample to extreme pressures ­ up to about 3.6 million atmospheres at room temperature and 1.7 million atmospheres at 3,000°C.

At first, nanoshocks may seem like something to describe the millions of aftershocks of a large earthquake.

But Lawrence Livermore National Laboratory physicists are using an ultra-fast laser-based technique they dubbed "nanoshocks" for something entirely different. In fact, the "nanoshocks" have such a small spatial scale that scientists can use them to study shock behavior in tiny samples such as thin films or other systems with microscopic dimensions (a few tens of micrometers). In particular they have used the technique to shock materials under high static pressure in a diamond anvil cell (DAC).

Using a DAC, which probes the behavior of materials under ultra-high pressures (and which requires small samples), the team statically compressed a sample of argon up to 78,000 atmospheres of pressure and then further shock compressed it up to a total of 280,000 atmospheres. They analyzed the propagating shock waves using an ultra-fast interferometric technique. They achieved combinations of pressures, temperatures and time scales that are otherwise inaccessible.

In some experiments they observed a metastable argon state that may have been superheated -- a state at a pressure and temperature at which argon would normally be liquid but because of the ultra-short time scale does not have enough time to melt.

"It can be used to study fundamental physical and chemical processes as well as improve our understanding of a wide range of real-world problems ranging from detonation phenomena to the interiors of planets," said LLNL physicist Jonathan Crowhurst, a co-author of a paper, which will appear in the July 15 edition of the Journal of Applied Physics.

The time scale is short enough to permit direct comparison with molecular dynamics simulations, which usually run for less than a nanosecond (one billionth of a second).

Shocked behavior in microscopic samples can consist of the behavior of shocked explosives before chemistry begins or the high density, low temperature states of light materials such as those that are found in giant gas planets, according to LLNL lead author Michael Armstrong.

"Essentially, this allows us to examine a very broad range of thermodynamic states, including states corresponding to planetary interiors and high density, low-temperature states that have been predicted to exhibit unobserved exotic behavior," Armstrong said.

For decades, compression experiments have been used to determine the thermodynamic states of materials at high pressures and temperatures. The results are necessary to correctly interpret seismic data, understand planetary composition and the evolution of the early solar system, shock-wave induced chemistry and fundamental issues in condensed matter physics.

Armstrong said their technique for launching and analyzing nanoshocks was so fast they were able to see behavior in microscopic samples that is inaccessible in experiments using static or single-shock wave compression.

Note: This story has been adapted from a news release issued by the DOE/Lawrence Livermore National Laboratory

Post Comments:

Search

New Articles
Nanotechnology for water purification

Multifunctional nanoparticle enables new type of biological imagingMultifunctional nanoparticle enables new type of biological imaging

Nanowick at heart of new system to cool 'power electronics'Nanowick at heart of new system to cool 'power electronics'

Graphene oxide gets greenGraphene oxide gets green

Collaboration leads to simpler method for building varieties of nanocrystal superlatticesCollaboration leads to simpler method for building varieties of nanocrystal superlattices

Nanotech coatings produce 20 times more electricity from sewage

Nanoribbons for graphene transistorsNanoribbons for graphene transistors

Engineering researchers simplify process to make world's tiniest wiresEngineering researchers simplify process to make world's tiniest wires

Scientists construct molecular 'knots'Scientists construct molecular 'knots'

Researchers find gene-silencing nanoparticles may put end to pesky summer pest

Submarines could use new nanotube technology for sonar and stealthSubmarines could use new nanotube technology for sonar and stealth

Researchers cut years from drug development with nanoscopic bead technology

Nanotubes pass acid test

Chemists make breakthrough in nanoscience research

Nano Letters publishes Dr. Yong Shi's energy harvesting technology



Archives
July 2010
June 2010
May 2010
April 2010
March 2010
February 2010
January 2010
December 2009
November 2009
October 2009
September 2009
August 2009
July 2009
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007


Science Friends
Agricultural Science
Astronomy News
Biology News

Cognitive Research
Chemistry News
Tissue Engineering
Cancer Research


Forensics Report
Fossil News
Genetic Archaeology

Geology News


Physics News


  Archives |  Advertise With Us |  Contact Us |  Links
Use of this site constitutes acceptance of our Terms of Service and Privacy Policy. All contents © 2000 - 2011 Web Doodle, LLC. All rights reserved.