Nanite News
Recent News |  Archives |  Tags |  About |  Newsletter |  Links | 
New Articles
Team builds world's first nanofluidic device with complex 3-D surfaces 4/4/2009

Researchers peer into nanowires to measure dopant properties 4/3/2009

Magnetic nano-'shepherds' organize cells 4/2/2009

DNA-based assembly line for precision nano-cluster construction 3/31/2009

New nanogenerator may charge iPods and cell phones with a wave of the hand 3/28/2009

Fitter frames: Nanotubes boost structural integrity of composites 3/27/2009

Scientists patent corrosion-resistant nano-coating for metals 3/26/2009

Special gold nanoparticles show promise for 'cooking' cancer cells 3/24/2009

Hollow gold nanospheres show promise for biomedical and other applications 3/23/2009

Engineers prove that carbon nanotubes are superior to metals for electronics 3/22/2009

'Buckyballs' to treat multiple sclerosis 3/21/2009

No small measure: Origins of nanorod diameter discovered 3/20/2009

Slimmer, stickier nanorods give boost to 3-D computer chips 3/18/2009

Nanocups brim with potential 3/17/2009

Quantum dots and nanomaterials: Ingredients for better lighting and more reliable power 3/16/2009

Researchers peer into nanowires to measure dopant properties (4/3/2009)

Tags:
nanowires, semiconductors, electronics

Semiconductor nanowires - tiny wires with a diameter as small as a few billionths of a meter - hold promise for devices of the future, both in technology like light-emitting diodes and in new versions of transistors and circuits for next generation of electronics. But in order to utilize the novel properties of nanowires, their composition must be precisely controlled, and researchers must better understand just exactly how the composition is determined by the synthesis conditions.

Nanowires are synthesized from elements that form bulk semiconductors, whose electrical properties are in turn controlled by adding minute amounts of impurities called dopants. The amount of dopant determines the conductivity of the nanowire.

But because nanowires are so small - with diameters ranging from 3 to 100 nanometers - researchers have never been able to see just exactly how much of the dopant gets into the nanowire during synthesis. Now, using a technique called atom probe tomography, Lincoln Lauhon, assistant professor of materials science and engineering at Northwestern University's McCormick School of Engineering and Applied Science, has provided an atomic-level view of the composition of a nanowire. By precisely measuring the amount of dopant in a nanowire, researchers can finally understand the synthesis process on a quantitative level and better predict the electronic properties of nanowire devices.

The results were published online March 29 in the journal Nature Nanotechnology.

"We simply mapped where all the atoms were in a single nanowire, and from the map we determined where the dopant atoms were," he says. "The more dopant atoms you have, the higher the conductivity."

Previously, researchers could not measure the amount of dopant and had to judge the success of the synthesis based on indirect measurements of the conductivity of nanowire devices. That meant that variations in device performance were not readily explained.

"If we can understand the origin of the electrical properties of nanowires, and if we can rationally control the conductivity, then we can specify how a nanowire will perform in any type of device," he says. "This fundamental scientific understanding establishes a basis for engineering."

Lauhon and his group performed the research at Northwestern's Center for Atom Probe Tomography, which uses a Local Electrode Atom ProbeTM microscope to dissect single nanowires and identify their constituents. This instrumentation software allows 3-D images of the nanowire to be generated, so Lauhon could see from all angles just how the dopant atoms were distributed within the nanowire.

In addition to measuring the dopant in the nanowire, Lauhon's colleague, Peter Voorhees, Frank C. Engelhart Professor of Materials Science and Engineering at Northwestern, created a model that relates the nanowire doping level to the conditions during the nanowire synthesis. The researchers performed the experiment using germanium wires and phosphorous dopants - and they will soon publish results using silicon - but the model provides guidance for nanowires made from other elements, as well.

"This model uses insight from Lincoln's experiment to show what might happen in other systems," Voorhees says. "If nanowires are going to be used in device applications, this model will provide guidance as to the conditions that will enable us to add these elements and control the doping concentrations."

Both professors will continue working on this research to broaden the model.

"We would like to establish the general principles for doping semiconductor nanowires," Lauhon says.

Note: This story has been adapted from a news release issued by the Northwestern University

Debt Consolidation - - - Credit Counseling

Post Comments:

Search



Archives
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007


Science Friends
Astronomy News

Cognitive Research
Chemistry News
Tissue Engineering
Cancer Research
Geology News
Physics News
  Archives |  Advertise With Us |  Contact Us |  Links
All contents © 2000 - 2010 Web Doodle, LLC. All rights reserved.