Nanite News
Recent News |  Archives |  Tags |  About |  Newsletter |  Links | 
New Articles
Nanopillars promise cheap, efficient, flexible solar cells 7/14/2009

Material world: Graphene's versatility promises new applications 7/13/2009

Contaminated site remediation: Are nanomaterials the answer? 7/12/2009

Spontaneous assembly 7/11/2009

Researchers enlist DNA to bring carbon nanotubes' promise closer to reality 7/10/2009

Remote-control closed system invented for inserting radio-active atoms inside fullerenes 7/9/2009

Canadian researchers set to study impact of nanomaterials on aquatic ecosystems 7/8/2009

Nano measurement in the third dimension 7/7/2009

A new approach to engineering for extreme environments 7/4/2009

Team to study applicability of solar cell coatings 7/3/2009

New statistical technique improves precision of nanotechnology data 7/2/2009

Researchers discover new fluorescent silicon nanoparticles 7/1/2009

Singapore nanotechnology combats fatal brain infections 6/30/2009

Implant bacteria, beware: Researchers create nano-sized assassins 6/28/2009

Making nanoparticles in artificial cells 6/27/2009

Researchers outline structure of largest nonvirus particle ever crystallized (11/27/2007)

Tags:
nanoparticles, storage

Model of the vault derived by UCLA researchers, with applications to drug delivery (figure published in Nov. 27 edition of PLoS Biology).
Model of the vault derived by UCLA researchers, with applications to drug delivery (figure published in Nov. 27 edition of PLoS Biology).
Researchers at UCLA's California NanoSystems Institute, the David Geffen School of Medicine at UCLA and the Howard Hughes Medical Institute have modeled the structure of the largest cellular particle ever crystallized, suggesting ways to engineer the particles for drug delivery.

The research study, which focuses on new engineered nanomaterial vaults for use as a drug-therapy vehicle, appears in the Nov. 27 edition of the peer-reviewed, open-access journal PLoS Biology, published by the Public Library of Science, and is available at .

The team of researchers at UCLA is led by David Eisenberg and Leonard H. Rome of the departments of biological chemistry at the Geffen School of Medicine and the California NanoSystems Institute and associate researchers Daniel H. Anderson, Valerie A. Kickhoefer and Stuart A. Sievers. Eisenberg, Anderson and Sievers are also members of the Howard Hughes Medical Institute and the UCLAâ€"U.S. Department of Energy Institute for Genomics and Proteomics.

Vaults are large, barrel-shaped particles found in the cytoplasm of all mammalian cells; they may function in innate immunity. As naturally occurring nanoscale capsules, vaults may be useful to engineer as therapeutic delivery vehicles. For the study, the team of researchers proposed an atomic structure for the thin outer shell of the vault.

Using X-ray diffraction and computer modeling, the research team developed a draft atomic model for the major vault protein, which forms the shell-like enclosure of the vault.

"Our draft model is essentially an atomic-level vault with a completely unique structure, like a barrel with staves. It is unlike any other large structure found in nature," Rome said. "The outside of the vault structure is like an eggshell â€" a continuous protective barrier with no gaps."

The shell is made up of 96 identical protein chains â€" each made of 873 amino acid residues â€" folded into 14 domains. Each chain forms an elongated stave of half the vault, as well as the cap of the barrel-like shell.

"These nanostructured vaults offer a human-friendly nanocontainer, like a molecular-level C-5A transport jet, with a cargo hold large enough to encompass a whole ribosome with its hundreds of proteins and nucleic acids, or enough drugs to control a cell," Eisenberg said.

The construction of the draft atomic model lays the foundation for further studies of vaults and will guide vault engineering projects focused on the targeted release of vault contents for drug delivery.

The research is supported by a National Science Foundation Nanoscience Interdisciplinary Research Team Grant, the Howard Hughes Medical Institute, the National Institutes of Health and the Department of Energy.

Note: This story has been adapted from a news release issued by UCLA

Post Comments:

Search



Archives
July 2009
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007


Science Friends
Agricultural Science
Astronomy News
Biology News

Cognitive Research
Chemistry News
Tissue Engineering
Cancer Research
Cybernetics Research
Forensics Report
Fossil News
Genetic Archaeology

Geology News
Physics News
  Archives |  Advertise With Us |  Contact Us |  Links
All contents © 2000 - 2010 Web Doodle, LLC. All rights reserved.