Nanite News
Recent News |  Archives |  Tags |  About |  Newsletter |  Links | 
New Articles
Discovery of non-blinking semiconductor nanocrystals advances their applications 5/18/2009

Self-assembly now easier to control 5/17/2009

Controllable double quantum dots and Klein tunneling in nanotubes 5/16/2009

Graphene yields secrets to its extraordinary properties 5/15/2009

DNA gripped in nanopores 5/15/2009

New nanocrystals show potential for cheap lasers, new lighting 5/12/2009

New nanotube coating enables novel laser power meter 5/11/2009

Faster computers, electronic devices possible after scientists create large-area graphene on copper 5/10/2009

Physicists create world's smallest incandescent lamp 5/9/2009

Nano-sandwich triggers novel electron behavior 5/8/2009

Scientists demonstrate effect of confining dielectrics on semiconductor nanowire conductivity 5/7/2009

Targeting tumors using tiny gold particles 5/6/2009

Researchers construct carbon nanotube device that can detect colors of the rainbow 5/2/2009

Nanophysicists find unexpected magnetic effect 5/1/2009

Nanoneedle is small in size, but huge in applications 4/30/2009

Researchers achieve dramatic increase in thermoelectric efficiency (3/23/2008)

Tags:
materials, thermoelectric materials, crystals

A cross-section of nano-crystalline bismuth antimony telluride grains, as viewed through transmission electron microscope. Colors highlight the features of each grain of the semiconductor alloy in bulk form. A team of researchers from Boston College and MIT produced a major increase in thermoelectric efficiency after using nanotechnology to structure the material, which is commonly used in industry and research. - Credit: Boston College, MIT, and GMZ Inc.
A cross-section of nano-crystalline bismuth antimony telluride grains, as viewed through transmission electron microscope. Colors highlight the features of each grain of the semiconductor alloy in bulk form. A team of researchers from Boston College and MIT produced a major increase in thermoelectric efficiency after using nanotechnology to structure the material, which is commonly used in industry and research. - Credit: Boston College, MIT, and GMZ Inc.
Nanotech advance heralds new era in heating, cooling and power generation

Researchers at Boston College and MIT have used nanotechnology to achieve a major increase in thermoelectric efficiency, a milestone that paves the way for a new generation of products - from semiconductors and air conditioners to car exhaust systems and solar power technology - that run cleaner.

The team's low-cost approach, details of which are published today in the online version of the journal Science, involves building tiny alloy nanostructures that can serve as micro-coolers and power generators. The researchers said that in addition to being inexpensive, their method will likely result in practical, near-term enhancements to make products consume less energy or capture energy that would otherwise be wasted.

The findings represent a key milestone in the quest to harness the thermoelectric effect, which has both enticed and frustrated scientists since its discovery in the early 19th century. The effect refers to certain materials that can convert heat into electricity and vice versa. But there has been a hitch in trying to exploit the effect: most materials that conduct electricity also conduct heat, so their temperature equalizes quickly. In order to improve efficiency, scientists have sought materials that will conduct electricity but not similarly conduct heat.

Using nanotechnology, the researchers at BC and MIT produced a big increase in the thermoelectric efficiency of bismuth antimony telluride - a semiconductor alloy that has been commonly used in commercial devices since the 1950s - in bulk form. Specifically, the team realized a 40 percent increase in the alloy's figure of merit, a term scientists use to measure a material's relative performance.

The achievement marks the first such gain in a half-century using the cost-effective material that functions at room temperatures and up to 250 degrees Celsius. The success using the relatively inexpensive and environmentally friendly alloy in bulk form means the discovery can quickly be applied to a range of uses, leading to higher cooling and power generation efficiency.

"By using nanotechnology, we have found a way to improve an old material by breaking it up and then rebuilding it in a composite of nanostructures in bulk form," said Boston College physicist Zhifeng Ren, one of the leaders of the project. "This method is low cost and can be scaled for mass production. This represents an exciting opportunity to improve the performance of thermoelectric materials in a cost-effective manner."

"These thermoelectric materials are already used in many applications, but this better material can have a bigger impact," said Gang Chen, the Warren and Towneley Rohsenow Professor of Mechanical Engineering at MIT and another leader of the project.

At its core, thermoelectricity is the "hot and cool" issue of physics. Heating one end of a wire, for example, causes electrons to move to the cooler end, producing an electric current. In reverse, applying a current to the same wire will carry heat away from a hot section to a cool section. Phonons, a quantum mode of vibration, play a key role because they are the primary means by which heat conduction takes place in insulating solids.

Bismuth antimony telluride is a material commonly used in thermoelectric products, and the researchers crushed it into a nanoscopic dust and then reconstituted it in bulk form, albeit with nanoscale constituents. The grains and irregularities of the reconstituted alloy dramatically slowed the passage of phonons through the material, radically transforming the thermoelectric performance by blocking heat flow while allowing the electrical flow.

In addition to Ren and six researchers at his BC lab, the international team involved MIT researchers, including Chen and Institute Professor Mildred S. Dresselhaus; research scientist Bed Poudel at GMZ Energy, Inc, a Newton, Mass.-based company formed by Ren, Chen, and CEO Mike Clary; as well as BC visiting Professor Junming Liu, a physicist from Nanjing University in China.

Thermoelectric materials have been used by NASA to generate power for far-away spacecraft. These materials have been used by specialty automobile seat makers to keep drivers cool during the summer. The auto industry has been experimenting with ways to use thermoelectric materials to convert waste heat from a car exhaust systems into electric current to help power vehicles.

The research was supported by the Department of Energy and by the National Science Foundation.

Note: This story has been adapted from a news release issued by MIT

Credit Counseling - - - Internet Marketing

Comments:

1. Uncle B

12/8/2008 1:54:47 PM MST

Looking for ways to exploit daily temperature changes in Canada especially! If I could get electrical power from the change, I could run LED lights for Free!


Leave a Reply:

Search



Archives
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007


Science Friends
Astronomy News

Cognitive Research
Chemistry News
Tissue Engineering
Cancer Research
Geology News
Physics News
  Archives |  Advertise With Us |  Contact Us |  Links
All contents © 2000 - 2010 Web Doodle, LLC. All rights reserved.