Nanite News
Recent News |  Archives |  Tags |  About |  Newsletter |  Links | 
New Articles
New nanotube coating enables novel laser power meter 5/11/2009

Faster computers, electronic devices possible after scientists create large-area graphene on copper 5/10/2009

Physicists create world's smallest incandescent lamp 5/9/2009

Nano-sandwich triggers novel electron behavior 5/8/2009

Scientists demonstrate effect of confining dielectrics on semiconductor nanowire conductivity 5/7/2009

Targeting tumors using tiny gold particles 5/6/2009

Researchers construct carbon nanotube device that can detect colors of the rainbow 5/2/2009

Nanophysicists find unexpected magnetic effect 5/1/2009

Nanoneedle is small in size, but huge in applications 4/30/2009

Catching the lightwave: Nano-mechanical sensors 'wired' by photonics 4/29/2009

Scientists moving closer to 'artificial noses' 4/26/2009

Discovery of an unexpected boost for solar water-splitting cells 4/25/2009

Self-assembled nanowires could make chips smaller and faster 4/22/2009

Bridging the gap in nanoantennas 4/21/2009

Novel technique shrinks size of nanotechnology circuitry 4/18/2009

New nanotube coating enables novel laser power meter (5/11/2009)

Tags:
nanotubes
Carbon nanotubes enable the copper instrument to withstand the intensity of military lasers while precisely measuring their power. Laser light is distributed evenly inside the water-cooled cavity by a mirror (diagonal component at center of graphic). - Credit: C. Cromer/NIST
Carbon nanotubes enable the copper instrument to withstand the intensity of military lasers while precisely measuring their power. Laser light is distributed evenly inside the water-cooled cavity by a mirror (diagonal component at center of graphic). - Credit: C. Cromer/NIST

The U.S. military can now calibrate high-power laser systems, such as those intended to defuse unexploded mines, more quickly and easily thanks to a novel nanotube-coated power measurement device developed at the National Institute of Standards and Technology (NIST).

The new laser power meter, tested at a U.S. Air Force base last week, will be used to measure the light emitted by 10-kilowatt (kW) laser systems. Light focused from a 10 kW laser is more than a million times more intense than sunlight reaching the Earth. Until now, NIST-built power meters, just like the lasers they were intended to measure, were barely portable and operated slowly. The new power meter is much smaller-about the size of a crock pot rather than a refrigerator. It also features a new design that enables it to make continuous power measurements.

A key innovation is the use of a sprayed-on coating of carbon nanotubes-tiny cylinders made of carbon atoms-which conduct heat hundreds of times better than conventional detector coating materials.

In the new power meter, laser light is absorbed in a cone-shaped copper cavity, where a spinning mirror directs the light over a large area and distributes the heat uniformly. The cavity is lined with a NIST-developed coating made of multiwalled carbon nanotubes held together by a potassium silicate (water glass) binder, and surrounded by a water jacket. The coating absorbs light and converts it to heat. The resulting rise in water temperature generates a current, which is measured to determine the power of the laser.

NIST has developed and maintained optical power standards for decades. In recent years, NIST researchers have experimented with a variety of coatings made of nanotubes because they offer an unusual combination of desirable properties, including intense black color for maximum light absorption. Designing a detector to collect and measure all of the power from a laser intended to significantly alter its target is a significant challenge. The new power meter uses the latest version of NIST's nanotube coating,* which absorbs light efficiently, is more stable than some conventional coatings such as carbon black, and resists laser damage as effectively as commercial ceramic coatings.

Among other test results, NIST has found that multiwalled carbon nanotubes perform better than single-walled nanotubes. Researchers are continuing to seek nanotube formulas that are durable and easy to apply, like enamel paint, but have even higher damage thresholds than today's coatings.

NIST's nanotube coating technology already has been transferred to industry for use in commercial products. Development of the new power meter was funded by the Air Force.

Note: This story has been adapted from a news release issued by the National Institute of Standards and Technology (NIST)

Credit Counseling - - - Internet Marketing

Post Comments:

Search



Archives
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007


Science Friends
Astronomy News

Cognitive Research
Chemistry News
Tissue Engineering
Cancer Research
Geology News
Physics News
  Archives |  Advertise With Us |  Contact Us |  Links
All contents © 2000 - 2010 Web Doodle, LLC. All rights reserved.