Nanite News
Recent News |  Archives |  Tags |  About |  Newsletter |  Links | 


More Articles
A warmer future for watersportsA warmer future for watersports

Inbreeding may have caused Darwin family illsInbreeding may have caused Darwin family ills


Gene discovery may lead to new varieties of soybean plantsGene discovery may lead to new varieties of soybean plants


A lab rat - created in the labA lab rat - created in the lab



Marked for Life: Tattoo Matching Software to Identify SuspectsMarked for Life: Tattoo Matching Software to Identify Suspects


Venus is alive - geologically speakingVenus is alive - geologically speaking

Researchers shed light on ancient Assyrian tabletsResearchers shed light on ancient Assyrian tablets

Hawaiian submarine canyons are hotspots of biodiversity and biomass for seafloor animal communitiesHawaiian submarine canyons are hotspots of biodiversity and biomass for seafloor animal communities


Scientists locate apparent hydrothermal vents off AntarcticaScientists locate apparent hydrothermal vents off Antarctica

Juggling enhances connections in the brainJuggling enhances connections in the brain

Fill 'er up - with algaeFill 'er up - with algae

Scientists discover quantum fingerprints of chaosScientists discover quantum fingerprints of chaos

Graphene 2.0: A new approach to making a unique material (7/6/2010)

Tags:
graphene
Dr. Nongjian Tao is a researcher with the Center for Bioelectronics and Biosensors at the Biodesign Institute, Arizona State University. - The Biodesign Institute at Arizona State University.
Dr. Nongjian Tao is a researcher with the Center for Bioelectronics and Biosensors at the Biodesign Institute, Arizona State University. - The Biodesign Institute at Arizona State University.

Since its discovery, graphene-an unusual and versatile substance composed of a single-layer crystal lattice of carbon atoms-has caused much excitement in the scientific community. Now, Nongjian(NJ) Tao, a researcher at the Biodesign Institute at Arizona State University has hit on a new way of making graphene, maximizing the material's enormous potential, particularly for use in high-speed electronic devices.

Along with collaborators from Germany's Max Planck Institute, the Department of Materials Science and Engineering, University of Utah, and Tsinghua University, Beijing, Tao created a graphene transistor composed of 13 benzene rings.

The molecule, known as a coronene, shows an improved electronic band gap, a property which may help to overcome one of the central obstacles to applying graphene technology for electronics. The group's work appears in the June 29 advanced online issue of Nature Communications.

Eventually, graphene components may find their way into a broad array of products, from lasers to ultra-fast computer chips; ultracapacitors with unprecedented storage capabilities; tools for microbial detection and diagnosis; photovoltaic cells; quantum computing applications and many others.

As the name suggests, graphene is closely related to graphite. Each time a pencil is drawn across a page, tiny fragments of graphene are shed. When properly magnified, the substance resembles an atomic-scale chicken wire. Sheets of the material possess exceptional electronic and optical properties, making it highly attractive for varied applications.

"Graphene is an amazing material, made of carbon atoms connected in a honeycomb structure," Tao says, pointing to graphene's huge electrical mobility-the ease with which electrons can flow through the material. Such high mobility is a critical parameter in determining the speed of components like transistors.

Producing usable amounts of graphene however, can be tricky. Until now, two methods have been favored, one in which single layer graphene is peeled from a multilayer sheet of graphite, using adhesive tape and the other, in which crystals of graphene are grown on a substrate, such as silicon carbide.

In each case, an intrinsic property of graphene must be overcome for the material to be suitable for a transistor. As Tao explains, "a transistor is basically a switch-you turn it on or off. A graphene transistor is very fast but the on/off ratio is very tiny. " This is due to the fact that the space between the valence and conduction bands of the material-or band gap as it is known-is zero for graphene.

In order to enlarge the band gap and improve the on/off ratio of the material, larger sheets of graphene may be cut down to nanoscale sizes. This has the effect of opening the gap between valence and conductance bands and improving the on/off ratio, though such size reduction comes at a cost. The process is laborious and tends to introduce irregularities in shape and impurities in chemical composition, which somewhat degrade the electrical properties of the graphene. "This may not really be a viable solution for mass production," Tao observes.

Rather than a top down approach in which sheets of graphene are reduced to a suitable size to act as transistors, Tao's approach is bottom up-building up the graphene, molecular piece by piece. To do this, Tao relies on the chemical synthesis of benzene rings, hexagonal structures, each formed from 6 carbon atoms. "Benzene is usually an insulating material, " Tao says. But as more such rings are joined together, the material's behavior becomes more like a semiconductor.

Using this process, the group was able to synthesize a coronene molecule, consisting of 13 benzene rings arranged in a well defined shape. The molecule was then fitted on either side with linker groups-chemical binders that allow the molecule to be attached to electrodes, forming a nanoscale circuit. An electrical potential was then passed through the molecule and the behavior, observed. The new structure displayed transistor properties, showing reversible on and off switches.

Tao points out that the process of chemical synthesis permits the fine-tuning of structures in terms of ideal size, shape and geometric structure, making it advantageous for commercial mass production. Graphene can also be made free of defects and impurities, thereby reducing electrical scattering and providing material with maximum mobility and carrier velocity, ideal for high-speed electronics.

In conventional devices, resistance is proportional to temperature, but in the graphene transistors by Tao et al., electron mobility is due to quantum tunneling, and remains temperature independent-a signature of coherent process.

The group believes they will be able to enlarge the graphene structures through chemical synthesis to perhaps hundreds of rings, while still maintaining a sufficient band gap to enable switching behavior. The research opens many possibilities for the future commercialization of this uncommon material, and its use in a new generation of ultra high-speed electronics.

Note: This story has been adapted from a news release issued by the Arizona State University

Post Comments:

Search

New Articles
Nano-sized advance toward next big treatment era in dentistryNano-sized advance toward next big treatment era in dentistry

Timely technology sees tiny transitionsTimely technology sees tiny transitions

Nanowires for the electronics and optoelectronics of the futureNanowires for the electronics and optoelectronics of the future

Researchers develop new method for mass-producing grapheneResearchers develop new method for mass-producing graphene

Researchers create self-assembling nanodevices that move and change shape on demand

Researchers develop ultra-simple method for creating nanoscale gold coatingsResearchers develop ultra-simple method for creating nanoscale gold coatings

Peering into the never-before-seen

Using carbon nanotubes in lithium batteries can dramatically improve energy capacityUsing carbon nanotubes in lithium batteries can dramatically improve energy capacity

Nanoparticle scientist speaks on new discoveries at Goldschmidt Conference

Researchers discover new properties of World's thinnest material

Gold nanoparticles create visible-light catalysis in nanowires

Scientists create nano-patterned superconducting thin filmsScientists create nano-patterned superconducting thin films

Scientists strive to replace silicon with graphene on nanocircuitryScientists strive to replace silicon with graphene on nanocircuitry

'Instant acid' method offers new insight into nanoparticle dispersal in the environment and the body'Instant acid' method offers new insight into nanoparticle dispersal in the environment and the body

Applied physicists create building blocks for a new class of optical circuitsApplied physicists create building blocks for a new class of optical circuits



Archives
July 2010
June 2010
May 2010
April 2010
March 2010
February 2010
January 2010
December 2009
November 2009
October 2009
September 2009
August 2009
July 2009
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007


Science Friends
Agricultural Science
Astronomy News
Biology News

Cognitive Research
Chemistry News
Tissue Engineering
Cancer Research


Forensics Report
Fossil News
Genetic Archaeology

Geology News


Physics News


  Archives |  Advertise With Us |  Contact Us |  Links
Use of this site constitutes acceptance of our Terms of Service and Privacy Policy. All contents © 2000 - 2011 Web Doodle, LLC. All rights reserved.