Nanite News
Recent News |  Archives |  Tags |  About |  Newsletter |  Links | 
New Articles
Facile synthesis of nanoparticles with multiple functions advanced in Singapore 7/15/2009

Nanopillars promise cheap, efficient, flexible solar cells 7/14/2009

Material world: Graphene's versatility promises new applications 7/13/2009

Contaminated site remediation: Are nanomaterials the answer? 7/12/2009

Spontaneous assembly 7/11/2009

Researchers enlist DNA to bring carbon nanotubes' promise closer to reality 7/10/2009

Remote-control closed system invented for inserting radio-active atoms inside fullerenes 7/9/2009

Canadian researchers set to study impact of nanomaterials on aquatic ecosystems 7/8/2009

Nano measurement in the third dimension 7/7/2009

A new approach to engineering for extreme environments 7/4/2009

Team to study applicability of solar cell coatings 7/3/2009

New statistical technique improves precision of nanotechnology data 7/2/2009

Researchers discover new fluorescent silicon nanoparticles 7/1/2009

Singapore nanotechnology combats fatal brain infections 6/30/2009

Implant bacteria, beware: Researchers create nano-sized assassins 6/28/2009

A new 'Pyrex' nanoparticle (9/8/2008)

Tags:
nanoparticles

Borosilicate glass nanoparticles. - Credit: Martin Gijs, EPFL
Borosilicate glass nanoparticles. - Credit: Martin Gijs, EPFL
Researchers in Switzerland have developed a new method to fabricate borosilicate glass nanoparticles. Used in microfluidic systems, these "Pyrex"-like nanoparticles are more stable when subjected to temperature fluctuations and harsh chemical environments than currently used nanoparticles made of polymers or silica glass. Their introduction could extend the range of potential nanoparticle applications in biomedical, optical and electronic fields.

Thanks to their large surface-to-volume ratio, nanoparticles have generated wide interest as potential transporters of antibodies, drugs, or chemicals for use in diagnostic tests, targeted drug therapy, or for catalyzing chemical reactions. Unfortunately, these applications are limited because nanoparticles disintegrate or bunch together when exposed to elevated temperatures, certain chemicals, or even de-ionized water. Using borosilicate glass (the original "Pyrex") instead of silica glass or polymers would overcome these limitations, but fabrication has been impossible to date due to the instability of the boron oxide precursor materials.

In this week's advance online issue of Nature Nanotechnology, a group of EPFL researchers, led by Professor Martin Gijs, reports on a new procedure to fabricate and characterize borosilicate glass nanoparticles. In addition to biomedical applications, the new nanoparticles could also have applications in the production of photonic bandgap devices with high optical contrast, contrast agents for ultrasonic microscopy or chemical filtration membranes.

Note: This story has been adapted from a news release issued by the Ecole Polytechnique Fédérale de Lausanne

Post Comments:

Search



Archives
July 2009
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007


Science Friends
Agricultural Science
Astronomy News
Biology News

Cognitive Research
Chemistry News
Tissue Engineering
Cancer Research
Cybernetics Research
Forensics Report
Fossil News
Genetic Archaeology

Geology News
Physics News
  Archives |  Advertise With Us |  Contact Us |  Links
All contents © 2000 - 2010 Web Doodle, LLC. All rights reserved.