Nanite News
Recent News |  Archives |  Tags |  About |  Newsletter |  Links | 
New Articles
Nanoelectronic transistor combined with biological machine could lead to better electronics 8/16/2009

Capping a two-faced particle gives engineers complete control 8/14/2009

Researchers make carbon nanotubes without metal catalyst 8/12/2009

Growth spurts 8/11/2009

Carbon nanoparticles toxic to adult fruit flies but benign to young 8/10/2009

Physicists to study attractive and repulsive forces crucial in designing nano-machines 8/8/2009

Nanoscale origami from DNA 8/7/2009

Sputtering System Supports Novel Commercially-Focused Silicon Device Research 8/5/2009

Self-healing surfaces 8/5/2009

From graphene to graphane, now the possibilities are endless 8/4/2009

Nanotubes take flight 8/3/2009

Breaking barriers with nanoscale lasers 8/2/2009

All-in-1 nanoparticle: A Swiss Army knife for nanomedicine 8/1/2009

Nanophysics: Serving up Buckyballs on a silver platter 7/31/2009

Scientists manipulate ripples in graphene, enabling strain-based graphene electronics 7/30/2009

Simulations help explain fast water transport in nanotubes (9/22/2008)

Tags:
nanotubes, materials

By discovering the physical mechanism behind the rapid transport of water in carbon nanotubes, scientists at the University of Illinois have moved a step closer to ultra-efficient, next-generation nanofluidic devices for drug delivery, water purification and nano-manufacturing.

"Extraordinarily fast transport of water in carbon nanotubes has generally been attributed to the smoothness of the nanotube walls and their hydrophobic, or water-hating surfaces," said Narayana R. Aluru, a Willett Faculty Scholar and a professor of mechanical science and engineering at the U. of I.

"We can now show that the fast transport can be enhanced by orienting water molecules in a nanotube," Aluru said. "Orientation can give rise to a coupling between the water molecules' rotational and translational motions, resulting in a helical, screw-type motion through the nanotube," Aluru said.

Using molecular dynamics simulations, Aluru and graduate student Sony Joseph examined the physical mechanism behind orientation-driven rapid transport. For the simulations, the system consisted of water molecules in a 9.83 nanometer long nanotube, connected to a bath at each end. Nanotubes of two diameters (0.78 nanometers and 1.25 nanometers) were used. Aluru and Joseph reported their findings in the journal Physical Review Letters.

For very small nanotubes, water molecules fill the nanotube in single-file fashion, and orient in one direction as a result of confinement effects. This orientation produces water transport in one direction. However, the water molecules can flip their orientations collectively at intervals, reversing the flow and resulting in no net transport.

In bigger nanotubes, water molecules are not oriented in any particular direction, again resulting in no transport.

Water is a polar molecule consisting of two hydrogen atoms and one oxygen atom. Although its net charge is zero, the molecule has a positive side (hydrogen) and a negative side (oxygen). This polarity causes the molecule to orient in a particular direction when in the presence of an electric field.

Creating and maintaining that orientation, either by directly applying an electric field or by attaching chemical functional groups at the ends of the nanotubes, produces rapid transport, the researchers report.

"The molecular mechanism governing the relationship between orientation and flow had not been known," Aluru said. "The coupling occurs between the rotation of one molecule and the translation of its neighboring molecules. This coupling moves water through the nanotube in a helical, screw-like fashion."

In addition to explaining recent experimental results obtained by other groups, the researchers' findings also describe a physical mechanism that could be used to pump water through nanotube membranes in next-generation nanofluidic devices.

Note: This story has been adapted from a news release issued by the University of Illinois at Urbana-Champaign

Post Comments:

Search



Archives
August 2009
July 2009
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007


Science Friends
Agricultural Science
Astronomy News
Biology News

Cognitive Research
Chemistry News
Tissue Engineering
Cancer Research
Cybernetics Research
Forensics Report
Fossil News
Genetic Archaeology

Geology News
Physics News
  Archives |  Advertise With Us |  Contact Us |  Links
Use of this site constitutes acceptance of our Terms of Service and Privacy Policy. All contents © 2000 - 2010 Web Doodle, LLC. All rights reserved.