Nanite News
Recent News |  Archives |  Tags |  About |  Newsletter |  Links | 


More Articles
Tracking down the human 'odorprint'Tracking down the human 'odorprint'

Researchers help identify cows that gain more while eating lessResearchers help identify cows that gain more while eating less


Scientists discover largest orb-weaving spiderScientists discover largest orb-weaving spider

A 200,000-year-old cut of meatA 200,000-year-old cut of meat

Fill 'er up - with algaeFill 'er up - with algae

Scientists discover quantum fingerprints of chaosScientists discover quantum fingerprints of chaos


Giant impact near India - not Mexico - may have doomed dinosaursGiant impact near India - not Mexico - may have doomed dinosaurs

How the Moon produces its own waterHow the Moon produces its own water

Juggling enhances connections in the brainJuggling enhances connections in the brain


Why sex with a partner is betterWhy sex with a partner is better

The book of life can now literally be written on paperThe book of life can now literally be written on paper

Gold solution for enhancing nanocrystal electrical conductance (9/13/2009)

Tags:
nanocrystals, gold
Matthew Sheldon, a member of the Paul Alivisatos research group, was part of Berkeley Lab research team that developed a technique by which the electrical conductivity of nanorod crystals of the semiconductor cadmium-selenide was increased 100,000 times. - Photo by Roy Kaltschmidt, Berkeley Lab Public Affairs
Matthew Sheldon, a member of the Paul Alivisatos research group, was part of Berkeley Lab research team that developed a technique by which the electrical conductivity of nanorod crystals of the semiconductor cadmium-selenide was increased 100,000 times. - Photo by Roy Kaltschmidt, Berkeley Lab Public Affairs

In a development that holds much promise for the future of solar cells made from nanocrystals, and the use of solar energy to produce clean and renewable liquid transportation fuels, researchers with the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have reported a technique by which the electrical conductivity of nanorod crystals of the semiconductor cadmium-selenide was increased 100,000 times.

"The key to our success is the fabrication of gold electrical contacts on the ends of cadmium-selenide rods via direct solution phase-growth of the gold tips," says Paul Alivisatos, interim-Director of Berkeley Lab, who led this research. "Solution-grown contacts provide an intimate, abrupt nanocrystal-metal contact free of surfactant, which means that unlike previous techniques for adding metal contacts, ours preserves the intrinsic semiconductor character of the starting nanocrystal."

Alivisatos is a chemist who holds joint appointments with Berkeley Lab's Materials Sciences Division, and with the University of California-Berkeley where he is the Larry and Diane Bock professor of Nanotechnology. He is an internationally-recognized authority on nanocrystal growth and the corresponding author of a paper published in the on-line edition of Nano Letters entitled: "Enhanced Semiconductor Nanocrystal Conductance via Solution Grown Contacts."

Co-authoring the paper with Alivisatos were Matthew Sheldon and Paul-Emile Trudeau, members of Alivisatos' research group; Taleb Mokari, of Berkeley Lab's Molecular Foundry; and Lin-Wang Wang, in Berkeley Lab's Computational Research Division.

With the world demand for energy projected to more than double by 2050 and more than triple by the end of the 21st century, it is imperative that sustainable and carbon-neutral energy technologies be developed. The use of sunlight to generate electricity as well as to split water molecules for the production of fuels is envisioned as an ideal energy source, and nanocrystals could be pivotal to the success of this vision. Electrical conductance in semiconductor nanocrystals is a critical element for both solar electricity and solar fuel technologies.

"Standard contacting procedures that deposit metal onto semiconductor nanocrystals directly, such as those used in commercial wafer-scale chip fabrication, cause alloying and chemical reactions at the metal-semiconductor interface," says Sheldon, who was the lead author on the Nano Letters paper. "This means that the finished electrical device is actually made of a different material than the starting nanocrystal."

Sheldon notes that while chemical treatments, such as etching off surfactant, have been shown to enhance the conductivity of thin film nanocrystal solids, these treatments will often alter the semiconductor's electrical properties, for example switching the material from n-type to p-type or altering the density of surface states. Furthermore, he says, previous studies have not explained why electrical conductance was enhanced, other than acknowledging the removal of surfactant coverage.

In this new study, Sheldon, Alivisatos and their co-authors used single nanostructure electrical measurements to make systematic comparisons between cadmium-selenide nanorods with and without gold tips. The solution-grown tipping process started with the addition of gold salt to a solution of toluene and cadmium-selenide nanorods, which resulted in gold metal being selectively deposited on the nanorod tips. A silicon wafer test chip was then dipped in this nanorod solution. After submersion, the evaporation of the toulene solvent oriented individual cadmium-selenide nanorods across pre-defined gold electrodes, which were fabricated through electron beam lithography. The results were gold-tipped cadmium-selenide heterostructure devices whose electrical conductance was characterized in a two-terminal geometry as a function of source-drain voltage and temperature.

Says Alivisatos, "Our study shows that the superior performance of gold-tipped cadmium-selenide heterostructures results from a lower Schottky barrier and that solution grown contacts do not alter the chemical composition of the semiconductor. Further, our work demonstrates the increasing sophistication of high-quality electrical devices that can be achieved through self-assembly and verifies this process as an excellent route to the next generation of electronic and optoelectronic devices utilizing colloidal nanocrystals."

Adds Sheldon, "We believe our approach is an ideal strategy for making future devices from nanocrystals because it preserves the semiconductor character of the nanocrystal as synthesized with the precise control of their synthesis developed over the past decades."

Sheldon says the next step in this work will be to determine if the dramatic improvements in electrical behavior can translate to improvements in nanocrystal-based energy production. Initially, the group plans to investigate the use of solution grown contacts in photovoltaic applications.

Note: This story has been adapted from a news release issued by the DOE/Lawrence Berkeley National Laboratory

Post Comments:

Search

New Articles
Paper strips can quickly detect toxin in drinking water 1/11/2010

UCLA's California NanoSystems Institute welcomes new start-up to incubator space 1/9/2010

Nanoscience goes 'big' 1/8/2010

'Nanodragster' races toward the future of molecular machines 1/7/2010

Biodegradable particles can bypass mucus, release drugs over time 1/5/2010

Novel nanotechnology heals abscesses caused by resistant staph bacteria 1/3/2010

An easy way to see the world's thinnest material 12/30/2009

Scientists create world's first molecular transistor 12/29/2009

Scientists use nanosensors for first time to measure cancer biomarkers in blood 12/28/2009

Nanoprobes hit targets in tumors, could lessen chemo side effects 12/27/2009

Nanoemulsion treatment advances with GSK agreement 12/26/2009

Tiny whispering gallery 12/23/2009

New Singapore-French nanotech lab opens at NTU 12/22/2009

Bioactive glass nanofibers produced 12/21/2009

Water droplets shape graphene nanostructures 12/20/2009


Archives
January 2010
December 2009
November 2009
October 2009
September 2009
August 2009
July 2009
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007


Science Friends
Agricultural Science
Astronomy News
Biology News

Cognitive Research
Chemistry News
Tissue Engineering
Cancer Research

Forensics Report
Fossil News
Genetic Archaeology

Geology News
Physics News


  Archives |  Advertise With Us |  Contact Us |  Links
Use of this site constitutes acceptance of our Terms of Service and Privacy Policy. All contents © 2000 - 2011 Web Doodle, LLC. All rights reserved.