Nanite News
Recent News |  Archives |  Tags |  About |  Newsletter |  Links | 
New Articles
Platinum nanocatalyst could aid drugmakers 9/1/2009

Acoustic tweezers can position tiny objects 8/31/2009

Researchers pinpoint neural nanoblockers in carbon nanotubes 8/29/2009

Lower-cost solar cells to be printed like newspaper, painted on rooftops 8/26/2009

2.5m Funding To Commercialize Breakthrough Carbon Nanotube Interconnection Process For Next-Generation Semiconductors 8/25/2009

Let there be light: Teaching magnets to do more than just stick around 8/23/2009

Bio-enabled, surface-mediated approach produces nanoparticle composites 8/22/2009

A safe approach to nanotechnology 8/21/2009

Researchers harness carbon nanomaterials for drug delivery systems, oxygen sensors 8/20/2009

New material for nanoscale computer chips 8/18/2009

New nanolaser key to future optical computers and technologies 8/17/2009

Nanoelectronic transistor combined with biological machine could lead to better electronics 8/16/2009

Capping a two-faced particle gives engineers complete control 8/14/2009

Researchers make carbon nanotubes without metal catalyst 8/12/2009

Growth spurts 8/11/2009

Engineers Prove Graphene is Strongest Material (7/23/2008)

Tags:
graphene

A representation of a diamond tip with a two nanometer radius indenting into a single atomic sheet of graphene
A representation of a diamond tip with a two nanometer radius indenting into a single atomic sheet of graphene
Research scientists at Columbia University's Fu Foundation School of Engineering and Applied Science have achieved a breakthrough by proving that the carbon material graphene is the strongest material ever measured.

Graphene holds great promise for the development of nano-scale devices and equipment. It consists of a single layer of graphite atoms arranged in a hexagonal lattice, similar to a honeycomb. As a two-dimensional material, every atom is exposed to the surface. It forms the basis of graphite fibers used in tennis racquets and other durable products. When rolled, very useful tiny tubes called nanotubes can be fabricated.

Until now, graphene's estimated strength, elasticity and breaking point were based on complex computer modeling theories. Laboratory tests had been stymied because of two major experimental challenges: the complexity in mechanically grasping graphene specimens to measure their elongation under force, and the difficulty of making specimens small enough to be free of imperfections.

"Our team sidestepped the size issue by creating samples small enough to be defect-free," said Columbia Professor Jeffrey Kysar.

The studies were conducted by postdoctoral researcher Changgu Lee and graduate student Xiaoding Wei, in the research groups of mechanical engineering professors Kysar and James Hone. The findings are published in the latest issue of Science.

"Our research establishes graphene as the strongest material ever measured, some 200 times stronger than structural steel," Hone said. "It would take an elephant, balanced on a pencil, to break through a sheet of graphene the thickness of Saran Wrap."

The team culled microscopic graphene samples, in which every single atom is on the surface, from larger graphite crystals. These newly created, two-dimensional samples were then placed over small circular holes etched in silicon to create miniature circular films only one atom thick. The graphene adhered to the silicon because of the attraction between their atoms.

The scientists tested the strength of the films by pushing on their centers with a diamond-tipped atomic force microscope with a radius of 20 billionths of a meter. The absence of flaws in the samples, each about one micron in diameter (one percent of the width of a human hair), enabled the scientists to test both elasticity and breaking point properties. The scientists collected more than 67 test values on 23 separate films.

"Until now, there's been no definitive set of experiments that people can use to validate or invalidate the computer simulations that model the mechanical properties of materials at strains literally up to the breaking point, " said Kysar. "It's important because this is a fundamental parameter for all types of materials.

"The Air Force wants to introduce new materials within a five-year cycle, versus 20 years now, so being able to predict the mechanical behavior of how a new material will fail under the most extreme circumstances will make it much less expensive and less time consuming to develop, and with better materials for everyday life."

"Though the strength of any practical material is still limited by many types of defects, the research can lead to a better understanding of the behavior of materials at extreme conditions, such as [those that] exist near the tip of a crack," said Hone. "This can in turn lead to far more robust materials, ones more resistant to oxidation and fatigue. Achieving a better understanding of how materials fail allows us to design and create newer, safer materials, and ultimately to build a safer, more efficient environment for us."

Note: This story has been adapted from a news release issued by Columbia University

Comments:

1. Rick

7/23/2008 4:12:50 PM MST

stone age
bronze age
iron age
industrial age
graphene age


2. Aerlynne

7/25/2008 10:55:03 AM MST

Graphene, a nanomaterial made from carbon atoms, has been shown in the laboratory to be the strongest material known to man - 300 times stronger than steel.

Unfortunately we as yet have no way to mass produce this material. It requires nanoscale engineering to create a perfect lattice of atoms.


3. Ben

7/27/2008 3:42:12 PM MST

I bet this gets used in body armor real quick. I wouldnt mind a Shirt made out of this with that reactive nano stuff on it that hardens on impact.


Leave a Reply:

Search



Archives
September 2009
August 2009
July 2009
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007


Science Friends
Agricultural Science
Astronomy News
Biology News

Cognitive Research
Chemistry News
Tissue Engineering
Cancer Research
Cybernetics Research
Forensics Report
Fossil News
Genetic Archaeology

Geology News
Physics News
  Archives |  Advertise With Us |  Contact Us |  Links
Use of this site constitutes acceptance of our Terms of Service and Privacy Policy. All contents © 2000 - 2010 Web Doodle, LLC. All rights reserved.