Nanite News
Recent News |  Archives |  Tags |  About |  Newsletter |  Links | 


More Articles
Tracking down the human 'odorprint'Tracking down the human 'odorprint'

Researchers help identify cows that gain more while eating lessResearchers help identify cows that gain more while eating less


Scientists discover largest orb-weaving spiderScientists discover largest orb-weaving spider

A 200,000-year-old cut of meatA 200,000-year-old cut of meat

Fill 'er up - with algaeFill 'er up - with algae

Scientists discover quantum fingerprints of chaosScientists discover quantum fingerprints of chaos


Giant impact near India - not Mexico - may have doomed dinosaursGiant impact near India - not Mexico - may have doomed dinosaurs

How the Moon produces its own waterHow the Moon produces its own water

Juggling enhances connections in the brainJuggling enhances connections in the brain


Why sex with a partner is betterWhy sex with a partner is better

The book of life can now literally be written on paperThe book of life can now literally be written on paper

24-carat gold 'snowflakes' improve graphene's electrical properties (10/15/2009)

Tags:
graphene, gold, nanostars
Kansas State University engineers named structures like these snowflake-shaped gold nanostars, or SFGNs. These 'snowflakes' are how gold formed on sheets of graphene floating in a solution. - Kansas State University department of chemical engineering
Kansas State University engineers named structures like these snowflake-shaped gold nanostars, or SFGNs. These 'snowflakes' are how gold formed on sheets of graphene floating in a solution. - Kansas State University department of chemical engineering

In an effort to make graphene more useful in electronics applications, Kansas State University engineers made a golden discovery -- gold "snowflakes" on graphene.

Vikas Berry is a K-State assistant professor of chemical engineering who works with graphene, a carbon material only a single atom thick and discovered just five years ago. To functionalize graphene with gold -- thus controlling its electronics properties -- Berry and Kabeer Jasuja, a K-State doctoral student in chemical engineering, imbedded gold on graphene.

To do this, the engineers placed the graphene oxide sheets in a gold ion solution that had a growth catalyst. Here, the atomically thick sheets swim and bathe in a pool of chemicals.

"Graphene-derivatives act like swimming molecular carpets when in solution and exhibit fascinating physiochemical behavior," Berry said. "If we change the surface functionality or the concentration, we can control their properties."

They found that rather than distributing itself evenly over graphene, the gold formed islands on the sheets' surfaces. They named these islands snowflake-shaped gold nanostars, or SFGNs.

"So we started exploring how these gold nanostars are formed," Berry said. "We found out that nanostars with no surface functionality are rather challenging to produce by other chemical processes. We can control the size of these nanostars and have characterized the mechanism of nucleation and growth of these nanostructures. It's similar to the mechanism that forms real snowflakes."

Berry said the presence of graphene is critical for the formation of the gold nanostars. "If graphene is absent, the gold would clump together and settle down as big chunks," he said. "But the graphene helps in stabilizing the gold. This makes the nanostars more useful for electronic applications."

In July, Jasuja and Berry published their work in the journal ACS-Nano.

The discovery of these gold "snowflakes" on graphene shows promise for biological devices as well as electronics. Berry is attaching DNA to these gold islands to make DNA sensors. He is joined by Nihar Mohanty, a doctoral student in chemical engineering, and undergraduate researcher Ashvin Nagaraja, a senior in electrical engineering. Nagaraja is a 2004 Manhattan High School graduate.

Berry said graphene-gold based DNA sensors will have enhanced sensitivity. Chemically reducing graphene oxide to obtain graphene requires harsh chemicals that destroy the DNA.

"Now we can use the harsh chemicals on graphene oxide imbedded with gold to obtain graphene with gold islands. Then we can use these gold islands to functionalize DNA."

Berry also is using graphene in conjunction with microwaves. He and Jasuja are "cooking" the graphene sheets as another way to produce particles on the material's surface.

Some of Berry's other graphene research involves using the modified graphene sheets to compartmentalize a coagulating solution, thus stabilizing it. His group has recently used hydrides to reduce graphene oxide to produce reduced graphene oxide in the matter of a few seconds. The graphene produced in this way can remain stable in the solution for several days. Further results will shortly appear in the journal Small

Discovered only five years ago, graphene has captured the attention of a large number of researchers who are studying its exceptional electrical, mechanical and optical properties, Berry said. His research group is among the few studying the material's interfacial properties and biological applications.

"We're entering a new era," Berry said. "From the zero-dimensional or one-dimensional molecular or polymer solutions, we are now venturing into the two-dimensional graphene solutions, which have fascinating new properties."

Note: This story has been adapted from a news release issued by the Kansas State University

Post Comments:

Search

New Articles
UCLA's California NanoSystems Institute welcomes new start-up to incubator space 1/9/2010

Nanoscience goes 'big' 1/8/2010

'Nanodragster' races toward the future of molecular machines 1/7/2010

Biodegradable particles can bypass mucus, release drugs over time 1/5/2010

Novel nanotechnology heals abscesses caused by resistant staph bacteria 1/3/2010

An easy way to see the world's thinnest material 12/30/2009

Scientists create world's first molecular transistor 12/29/2009

Scientists use nanosensors for first time to measure cancer biomarkers in blood 12/28/2009

Nanoprobes hit targets in tumors, could lessen chemo side effects 12/27/2009

Nanoemulsion treatment advances with GSK agreement 12/26/2009

Tiny whispering gallery 12/23/2009

New Singapore-French nanotech lab opens at NTU 12/22/2009

Bioactive glass nanofibers produced 12/21/2009

Water droplets shape graphene nanostructures 12/20/2009

Thermochemical nanolithography now allows multiple chemicals on a chip 12/19/2009


Archives
January 2010
December 2009
November 2009
October 2009
September 2009
August 2009
July 2009
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007


Science Friends
Agricultural Science
Astronomy News
Biology News

Cognitive Research
Chemistry News
Tissue Engineering
Cancer Research

Forensics Report
Fossil News
Genetic Archaeology

Geology News
Physics News


  Archives |  Advertise With Us |  Contact Us |  Links
Use of this site constitutes acceptance of our Terms of Service and Privacy Policy. All contents © 2000 - 2011 Web Doodle, LLC. All rights reserved.