Nanite News
Recent News |  Archives |  Tags |  About |  Newsletter |  Links | 
New Articles
'Stress tests' probe nanoscale strains in materials 11/29/2008

'The photon force is with us': Harnessing light to drive nanomachines 11/28/2008

Molecular memory a game-changer 11/25/2008

Nanocoatings boost industrial energy efficiency 11/21/2008

Nontoxic nanoparticle can deliver and track drugs 11/20/2008

Surface plasmon resonances of metal nanoparticles in array can have narrower spectral widths 11/19/2008

Nanoparticles trigger cell death? 11/18/2008

Findings suggest nanowires ideal for electronics manufacturing 11/18/2008

New research expected to improve laser devices and make photovoltaics more efficient 11/16/2008

Survey highlights support for nanotech in health fields but disapproval elsewhere 11/16/2008

Nanoparticles in the home: More and smaller than previously detected 11/15/2008

Miniaturizing memory: Taking data storage to the molecular level 11/15/2008

Researchers advance nano-scale electromechanical sensors 11/14/2008

Researchers show that plants can accumulate nanoparticles in tissues 11/14/2008

Liquid or solid? Charged nanoparticles in lipid membrane decide 11/13/2008

Progress toward new storage media (10/29/2008)

Tags:
lithography
This spin-transition compound can be nanopatterned by unconventional and soft lithography to give crystalline, well-oriented, micrometer-scale structures arranged in stripes on a silica surface, as revealed by optical and scanning force microscopy (inset). - (C) Wiley-VCH 2008
This spin-transition compound can be nanopatterned by unconventional and soft lithography to give crystalline, well-oriented, micrometer-scale structures arranged in stripes on a silica surface, as revealed by optical and scanning force microscopy (inset). - (C) Wiley-VCH 2008

In this information age, increased storage capacity is a central challenge for science and technology. A team of German and Italian researchers has pursued this by exploring the concept of "nanostructured storage domains". As the scientists, led by Massimiliano Cavallini at the National Research Council (CNR) in Bologna (Italy) and Mario Ruben at the Forschungszentrum Karlsruhe (Germany), report in the journal Angewandte Chemie, they have been able to produce reliable nanopatterns of a spin-transition compound on silicon oxide chips. This is a decisive step toward a new generation of molecular storage media in which binary data are stored by the "switching" of electron spins.

Currently, computer hard drives store data by magnetizing the surface of a rotating disk. Each "storage cell" has an "address", so that stored data can be accessed directly. To increase storage capacity, the individual magnetic domains are made smaller and smaller; we are however getting close to the limit. Thermal excitation occasionally causes some of the magnetic particles to flip in the other direction. When the domains are very small, the entire cell can rapidly lose its magnetization.

To achieve higher information density, we could change to other switchable material properties, such as the transition between two spin states. For example, iron(II) compounds can exist in either a high- or a low-spin state. "Switching" (flipping) can be controlled by changes in temperature, pressure, or electromagnetic radiatio

In addition to two distinguishable states to represent 0 and 1, data storage also requires a unique "address" for each storage location that can be identified by the optical writing and reading units of the computer. This requires an interface that makes the nanoscopic spin-state transitions of the molecular switching units compatible with the microscale instrument environment. This is possible if the spin-transition compound can be put into a highly ordered micro- or nanostructure.

By using special unconventional micro- and nanolithographic techniques, the team was able to "print" a neutral iron(II) complex onto a silicon wafer in the form of very fine lines. In this process, the nanocrystals organize themselves into a preferred orientation along the line. Furthermore, the researchers were able to transfer the pattern of a recorded CD onto a film of this iron compound. This is the first proof that it is possible to produce readable logic patterns with a spin-transfer compound.

To make the stripe structures technologically useful, the switching process must be adapted to room-temperature conditions; work on this front is already at an advanced stage.

Note: This story has been adapted from a news release issued by Wiley-Blackwell

Cheap Electricity - - Credit Counseling - Debt Consolidation

Post Comments:

Search

  Archives |  Advertise With Us |  Contact Us |  Links
All contents © 2000 - 2009 Web Doodle, LLC. All rights reserved.