Nanite News
Recent News |  Archives |  Tags |  About |  Newsletter |  Links | 
New Articles
Nanotube's 'tapestry' controls its growth 2/7/2009

Nanoscopic static electricity generates chiral patterns 2/6/2009

Nanotechnology makes supertelescopes much more sensitive 2/5/2009

Researcher rolls out new nanocars 2/4/2009

Researchers eye risks of quantum dots 2/3/2009

Capture of nanomagnetic 'fingerprints' a boost for next-generation information storage media 2/2/2009

World's first mandatory national nanotech rule pending 1/29/2009

Ethical evaluations of nanotechnology 1/28/2009

Plasmonic whispering gallery microcavity paves the way to future nanolasers 1/26/2009

Nano-tetherball biosensor precisely detects glucose 1/25/2009

Light-speed nanotech: Controlling the nature of graphene 1/24/2009

Tension in the nanoworld 1/24/2009

Semiconducting nanotubes produced in quantity 1/23/2009

Nanotech safety high on Congress' priority list 1/20/2009

Easy assembly of electronic biological chips 1/19/2009

Nanotube-producing Bacteria Show Manufacturing Promise (12/8/2007)

Tags:
bacteria, nanotubes, electronics, photovoltaics, solar cells, solar power

Genus Shewanella. The nanotube filaments produced by biological means could point toward semiconductor manufacturing processes with a smaller energy and environmental footprint. Image credit: Hor-Gil Hur, GIST
Genus Shewanella. The nanotube filaments produced by biological means could point toward semiconductor manufacturing processes with a smaller energy and environmental footprint. Image credit: Hor-Gil Hur, GIST
Two engineers at the University of California, Riverside are part of a binational team that has found semiconducting nanotubes produced by living bacteria - a discovery that could help in the creation of a new generation of nanoelectronic devices.

The research team believes this is the first time nanotubes have been shown to be produced by biological rather than chemical means. It opens the door to the possibility of cheaper and more environmentally friendly manufacture of electronic materials.

Study results appear in today's issue of the early edition of the Proceedings of the National Academy of Sciences.

The team, including Nosang V. Myung, associate professor of chemical and environmental engineering in the Bourns College of Engineering, and his postdoctoral researcher Bongyoung Yoo, found the bacterium Shewanella facilitates the formation of arsenic-sulfide nanotubes that have unique physical and chemical properties not produced by chemical agents.

"We have shown that a jar with a bug in it can create potentially useful nanostructures," Myung said. "Nanotubes are of particular interest in materials science because the useful properties of a substance can be finely tuned according to the diameter and the thickness of the tubes."

The whole realm of electronic devices which power our world, from computers to solar cells, today depend on chemical manufacturing processes which use tremendous energy, and leave behind toxic metals and chemicals. Myung said a growing movement in science and engineering is looking for ways to produce semiconductors in more ecologically friendly ways.

Two members of the research team, Hor-Gil Hur and Ji-Hoon Lee from Gwangju Institute of Science and Technology (GIST), Korea, first discovered something unexpected happening when they attempted to remediate arsenic contamination using the metal-reducing bacterium Shewanella. Myung, who specializes in electro-chemical material synthesis and device fabrication, was able to characterize the resulting nano-material.

The photoactive arsenic-sulfide nanotubes produced by the bacteria behave as metals with electrical and photoconductive properties. The researchers report that these properties may also provide novel functionality for the next generation of semiconductors in nano- and opto-electronic devices.

In a process that is not yet fully understood, the Shewanella bacterium secretes polysacarides that seem to produce the template for the arsenic sulfide nanotubes, Myung explained. The practical significance of this technique would be much greater if a bacterial species were identified that could produce nanotubes of cadmium sulfide or other superior semiconductor materials, he added.

"This is just a first step that points the way to future investigation," he said. "Each species of Shewanella might have individual implications for manufacturing properties."

Myung, Yoo, Hur and Lee were joined in the research by Min-Gyu Kim, Pohang Accelerator Laboratory, Pohang, Korea; Jongsun Maeng and Takhee Lee, GIST; Alice C. Dohnalkova and James K. Fredrickson, Pacific Northwest National Laboratory, Richland, Wash.; and Michael J. Sadowsky, University of Minnesota.

The Center for Nanoscale Innovation for Defense provided funding for Myung's contribution to the study.

Note: This story has been adapted from a news release issued by the University of California, Riverside

Debt Consolidation - Internet Marketing - Loans - Bankruptcy Certification

Post Comments:

Search



Archives
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007
  Archives |  Advertise With Us |  Contact Us |  Links
All contents © 2000 - 2010 Web Doodle, LLC. All rights reserved.