Nanite News
Recent News |  Archives |  Tags |  About |  Newsletter |  Links | 
New Articles
Nanotube's 'tapestry' controls its growth 2/7/2009

Nanoscopic static electricity generates chiral patterns 2/6/2009

Nanotechnology makes supertelescopes much more sensitive 2/5/2009

Researcher rolls out new nanocars 2/4/2009

Researchers eye risks of quantum dots 2/3/2009

Capture of nanomagnetic 'fingerprints' a boost for next-generation information storage media 2/2/2009

World's first mandatory national nanotech rule pending 1/29/2009

Ethical evaluations of nanotechnology 1/28/2009

Plasmonic whispering gallery microcavity paves the way to future nanolasers 1/26/2009

Nano-tetherball biosensor precisely detects glucose 1/25/2009

Light-speed nanotech: Controlling the nature of graphene 1/24/2009

Tension in the nanoworld 1/24/2009

Semiconducting nanotubes produced in quantity 1/23/2009

Nanotech safety high on Congress' priority list 1/20/2009

Easy assembly of electronic biological chips 1/19/2009

Enhancing solar cells with nanoparticles (12/25/2008)

Tags:
nanoparticles, electronics

Deriving plentiful electricity from sunlight at a modest cost is a challenge with immense implications for energy, technology, and climate policy. A paper in a special energy issue of Optics Express, the Optical Society's (OSA) open-access journal, describes a relatively new approach to solar cells: lacing them with nanoscopic metal particles. As the authors describe in the article, this approach has the potential to greatly improve the ability of solar cells to harvest light efficiently.

Like plants, solar cells turn light into energy. Plants do this inside vegetable matter, while solar cells do it in a semiconductor crystal doped with extra atoms. Current solar cells cannot convert all the incoming light into usable energy because some of the light can escape back out of the cell into the air. Additionally, sunlight comes in a variety of colors and the cell might be more efficient at converting bluish light while being less efficient at converting reddish light.

The nanoparticle approach seeks to remedy these problems. The key to this new research is the creation of a tiny electrical disturbance called a "surface plasmon." When light strikes a piece of metal it can set up waves in the surface of the metal. These waves of electrons then move about like ripples on the surface of a pond. If the metal is in the form of a tiny particle, the incoming light can make the particle vibrate, thus effectively scattering the light. If, furthermore, the light is at certain "resonant" colors, the scattering process is particularly strong.

In the Optics Express paper, Kylie Catchpole and Albert Polman show what happens when a thin coating of nanoscopic (a billionth of a meter in size) metal particles are placed onto a solar cell. First of all, the use of nanoparticles causes the incoming sunlight to scatter more fully, keeping more of the light inside the solar cell. Second, varying the size and material of the particles allows researchers to improve light capture at otherwise poorly-performing colors.

In their work, carried out at the FOM Institute for Atomic and Molecular Physics in The Netherlands, Catchpole and Polman showed that light capture for long-wavelength (reddish) light could be improved by a factor of more than ten. Previously Catchpole and co-workers at the University of New South Wales showed that overall light-gathering efficiency for solar cells using metallic nanoparticles can be improved by 30 percent.

"I think we are about three years from seeing plasmons in photovoltaic generation," says Catchpole, who has now started a new group studying surface plasmons at the Australian National University. "An important point about plasmonic solar cells is that they are applicable to any kind of solar cell." This includes the standard silicon or newer thin-film types.

Note: This story has been adapted from a news release issued by the Optical Society of America

Internet Marketing - Loans - Credit Card Consolidation -

Post Comments:

Search



Archives
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007
  Archives |  Advertise With Us |  Contact Us |  Links
All contents © 2000 - 2010 Web Doodle, LLC. All rights reserved.